improve tetrislogic API

This commit is contained in:
adrienmalin
2019-10-06 02:43:38 +02:00
parent 32bf60313c
commit fe69557bc6
7 changed files with 398 additions and 305 deletions

View File

@ -1,5 +1,15 @@
# -*- coding: utf-8 -*-
from .consts import LINES, COLLUMNS, NEXT_PIECES
from .utils import Movement, Rotation, Color, Coord
from .tetromino import Mino, Tetromino
from .tetrislogic import TetrisLogic, State, Matrix
from .utils import Movement, Rotation, Color, Coord, Phase
from .tetromino import (
Mino,
Tetromino,
I_Tetrimino,
J_Tetrimino,
L_Tetrimino,
O_Tetrimino,
S_Tetrimino,
T_Tetrimino,
Z_Tetrimino,
)
from .tetrislogic import TetrisLogic, Matrix

View File

@ -15,5 +15,3 @@ AUTOREPEAT_PERIOD = 0.010 # Official : 0.010 s
# Piece init coord
MATRIX_PIECE_COORD = Coord(4, LINES)
NEXT_PIECE_COORDS = [Coord(COLLUMNS + 4, LINES - 4 * n - 3) for n in range(NEXT_PIECES)]
HELD_PIECE_COORD = Coord(-5, LINES - 3)

View File

@ -1,9 +1,8 @@
# -*- coding: utf-8 -*-
import random
import pickle
from .utils import Coord, Movement, Rotation, T_Spin
from .tetromino import Tetromino, T_Tetrimino, I_Tetrimino
from .utils import Coord, Movement, Rotation, T_Spin, Phase
from .tetromino import Tetromino, T_Tetrimino
from .consts import (
LINES,
COLLUMNS,
@ -13,8 +12,6 @@ from .consts import (
AUTOREPEAT_DELAY,
AUTOREPEAT_PERIOD,
MATRIX_PIECE_COORD,
NEXT_PIECE_COORDS,
HELD_PIECE_COORD,
)
@ -22,16 +19,7 @@ LINES_CLEAR_NAME = "LINES_CLEAR_NAME"
CRYPT_KEY = 987943759387540938469837689379857347598347598379584857934579343
class State:
STARTING = "STARTING"
PLAYING = "PLAYING"
PAUSED = "PAUSED"
OVER = "OVER"
class PieceContainer:
def __init__(self):
self.piece = None
@ -41,12 +29,12 @@ class HoldQueue(PieceContainer):
class Matrix(list, PieceContainer):
def __init__(self, lines, collumns):
list.__init__(self)
PieceContainer.__init__(self)
self.lines = lines
self.collumns = collumns
self.ghost = None
def reset(self):
self.clear()
@ -57,11 +45,12 @@ class Matrix(list, PieceContainer):
self.append([None for x in range(self.collumns)])
def cell_is_free(self, coord):
return 0 <= coord.x < self.collumns and 0 <= coord.y and not self[coord.y][coord.x]
return (
0 <= coord.x < self.collumns and 0 <= coord.y and not self[coord.y][coord.x]
)
class NextQueue(PieceContainer):
def __init__(self, nb_pieces):
super().__init__()
self.nb_pieces = nb_pieces
@ -70,6 +59,14 @@ class NextQueue(PieceContainer):
class Stats:
SCORES = (
{LINES_CLEAR_NAME: "", T_Spin.NONE: 0, T_Spin.MINI: 1, T_Spin.T_SPIN: 4},
{LINES_CLEAR_NAME: "SINGLE", T_Spin.NONE: 1, T_Spin.MINI: 2, T_Spin.T_SPIN: 8},
{LINES_CLEAR_NAME: "DOUBLE", T_Spin.NONE: 3, T_Spin.T_SPIN: 12},
{LINES_CLEAR_NAME: "TRIPLE", T_Spin.NONE: 5, T_Spin.T_SPIN: 16},
{LINES_CLEAR_NAME: "TETRIS", T_Spin.NONE: 8},
)
def _get_score(self):
return self._score
@ -106,6 +103,32 @@ class Stats:
def update_time(self):
self.time += 1
def pattern_phase(self, t_spin, lines_cleared):
pattern_name = []
pattern_score = 0
combo_score = 0
if t_spin:
pattern_name.append(t_spin)
if lines_cleared:
pattern_name.append(self.SCORES[lines_cleared][LINES_CLEAR_NAME])
self.combo += 1
else:
self.combo = -1
if lines_cleared or t_spin:
pattern_score = self.SCORES[lines_cleared][t_spin]
self.goal -= pattern_score
pattern_score *= 100 * self.level
pattern_name = "\n".join(pattern_name)
if self.combo >= 1:
combo_score = (20 if lines_cleared == 1 else 50) * self.combo * self.level
self.score += pattern_score + combo_score
return pattern_name, pattern_score, self.combo, combo_score
class TetrisLogic:
@ -115,22 +138,13 @@ class TetrisLogic:
AUTOREPEAT_DELAY = AUTOREPEAT_DELAY
AUTOREPEAT_PERIOD = AUTOREPEAT_PERIOD
MATRIX_PIECE_COORD = MATRIX_PIECE_COORD
NEXT_PIECE_COORDS = NEXT_PIECE_COORDS
HELD_PIECE_COORD = HELD_PIECE_COORD
random_bag = []
def __init__(
self,
lines=LINES,
collumns=COLLUMNS,
next_pieces=NEXT_PIECES,
):
def __init__(self, lines=LINES, collumns=COLLUMNS, next_pieces=NEXT_PIECES):
self.stats = Stats()
self.load_high_score()
self.state = State.STARTING
self.phase = Phase.STARTING
self.held = HoldQueue()
self.matrix = Matrix(lines, collumns)
self.matrix.ghost = None
self.next = NextQueue(next_pieces)
self.autorepeatable_actions = (self.move_left, self.move_right, self.soft_drop)
self.pressed_actions = []
@ -142,35 +156,19 @@ class TetrisLogic:
self.auto_repeat = False
self.matrix.reset()
self.next.pieces = [self.new_piece() for n in range(self.next.nb_pieces)]
self.next.pieces = [Tetromino() for n in range(self.next.nb_pieces)]
self.held.piece = None
self.state = State.PLAYING
self.start(self.stats.update_time, 1)
self.on_new_game()
self.on_new_game(self.next.pieces)
self.new_level()
def on_new_game(self):
pass
def new_piece(self):
if not self.random_bag:
self.random_bag = list(Tetromino.shapes)
random.shuffle(self.random_bag)
piece = self.random_bag.pop()()
self.on_new_piece(piece)
return piece
def on_new_piece(self, piece):
def on_new_game(self, next_pieces):
pass
def new_level(self):
self.stats.new_level()
self.restart(self.fall, self.stats.fall_delay)
self.on_new_level(self.stats.level)
self.generation_phase()
def on_new_level(self, level):
@ -178,122 +176,133 @@ class TetrisLogic:
def generation_phase(self):
self.matrix.piece = self.next.pieces.pop(0)
self.next.pieces.append(Tetromino())
self.matrix.piece.coord = self.MATRIX_PIECE_COORD
self.matrix.ghost = self.matrix.piece.ghost()
self.move_ghost()
self.next.pieces.append(self.new_piece())
self.next.pieces[-1].coord = self.NEXT_PIECE_COORDS[-1]
for tetromino, coord in zip(self.next.pieces, self.NEXT_PIECE_COORDS):
tetromino.coord = coord
self.on_generation_phase(self.matrix.piece)
self.on_falling_phase()
if not self.can_move(self.matrix.piece.coord, (mino.coord for mino in self.matrix.piece)):
self.on_generation_phase(
self.matrix, self.matrix.piece, self.matrix.ghost, self.next.pieces
)
if not self.move(Movement.DOWN):
self.game_over()
else:
self.restart(self.fall, self.stats.fall_delay)
self.falling_phase()
def on_generation_phase(self, piece):
def on_generation_phase(self, matrix, falling_piece, ghost_piece, next_pieces):
pass
def on_falling_phase(self):
pass
def move_left(self):
self.move(Movement.LEFT)
def move_right(self):
self.move(Movement.RIGHT)
def rotate_clockwise(self):
self.rotate(Rotation.CLOCKWISE)
def rotate_counter(self):
self.rotate(Rotation.COUNTER)
def move_ghost(self):
def falling_phase(self):
self.phase = Phase.FALLING
self.matrix.ghost.coord = self.matrix.piece.coord
for ghost_mino, current_mino in zip(self.matrix.ghost, self.matrix.piece):
ghost_mino.coord = current_mino.coord
while self.can_move(self.matrix.ghost.coord + Movement.DOWN, (mino.coord for mino in self.matrix.ghost)):
while self.space_to_move(
self.matrix.ghost.coord + Movement.DOWN,
(mino.coord for mino in self.matrix.ghost),
):
self.matrix.ghost.coord += Movement.DOWN
def soft_drop(self):
moved = self.move(Movement.DOWN)
if moved:
self.stats.score += 1
return moved
self.on_falling_phase(self.matrix.piece, self.matrix.ghost)
def hard_drop(self):
while self.move(Movement.DOWN, prelock=False):
self.stats.score += 2
self.lock()
def on_falling_phase(self, falling_piece, ghost_piece):
pass
def fall(self):
self.move(Movement.DOWN)
def move(self, movement, prelock=True):
def move(self, movement, rotated_coords=None, lock=True):
potential_coord = self.matrix.piece.coord + movement
if self.can_move(potential_coord, (mino.coord for mino in self.matrix.piece)):
if self.matrix.piece.prelocked:
self.restart(self.lock, self.stats.lock_delay)
if self.space_to_move(
potential_coord,
rotated_coords or (mino.coord for mino in self.matrix.piece),
):
self.matrix.piece.coord = potential_coord
if not movement == Movement.DOWN:
self.matrix.piece.last_rotation_point = None
self.move_ghost()
self.on_moved(movement)
return True
else:
if prelock and not self.matrix.piece.prelocked and movement == Movement.DOWN:
self.matrix.piece.prelocked = True
self.start(self.lock, self.stats.lock_delay)
self.on_lock_phase()
return False
def on_moved(self, movement):
pass
def rotate(self, rotation):
rotated_coords = tuple(Coord(rotation * mino.coord.y, -rotation * mino.coord.x) for mino in self.matrix.piece)
for rotation_point, liberty_degree in enumerate(self.matrix.piece.SRS[rotation][self.matrix.piece.orientation], start=1):
potential_coord = self.matrix.piece.coord + liberty_degree
if self.can_move(potential_coord, rotated_coords):
if self.matrix.piece.prelocked:
self.restart(self.lock, self.stats.lock_delay)
self.matrix.piece.coord = potential_coord
if rotated_coords:
for mino, coord in zip(self.matrix.piece, rotated_coords):
mino.coord = coord
self.matrix.piece.orientation = (self.matrix.piece.orientation + rotation) % 4
else:
if movement != Movement.DOWN:
self.matrix.piece.last_rotation_point = None
if self.phase == Phase.LOCK:
self.restart(self.pattern_phase, self.stats.lock_delay)
self.falling_phase()
return True
else:
if lock and self.phase != Phase.LOCK and movement == Movement.DOWN:
self.lock_phase()
return False
def lock_phase(self):
self.phase = Phase.LOCK
self.on_lock_phase(self.matrix.piece)
self.start(self.pattern_phase, self.stats.lock_delay)
def on_lock_phase(self, locked_piece):
pass
def space_to_move(self, potential_coord, minoes_coord):
return all(
self.matrix.cell_is_free(potential_coord + mino_coord)
for mino_coord in minoes_coord
)
def rotate(self, rotation):
rotated_coords = tuple(
Coord(rotation * mino.coord.y, -rotation * mino.coord.x)
for mino in self.matrix.piece
)
for rotation_point, liberty_degree in enumerate(
self.matrix.piece.SRS[rotation][self.matrix.piece.orientation], start=1
):
if self.move(liberty_degree, rotated_coords):
self.matrix.piece.orientation = (
self.matrix.piece.orientation + rotation
) % 4
self.matrix.piece.last_rotation_point = rotation_point
self.move_ghost()
self.on_rotated(rotation)
return True
else:
return False
def on_rotated(self, direction):
def hold(self):
if not self.matrix.piece.hold_enabled:
return
self.matrix.piece.hold_enabled = False
self.stop(self.pattern_phase)
self.stop(self.fall)
self.matrix.piece, self.held.piece = self.held.piece, self.matrix.piece
self.on_hold(self.held.piece)
if self.matrix.piece:
self.matrix.piece.coord = self.MATRIX_PIECE_COORD
self.matrix.ghost = self.matrix.piece.ghost()
self.falling_phase()
else:
self.generation_phase()
def on_hold(self, held_piece):
pass
def on_lock_phase(self):
pass
SCORES = (
{LINES_CLEAR_NAME: "", T_Spin.NONE: 0, T_Spin.MINI: 1, T_Spin.T_SPIN: 4},
{LINES_CLEAR_NAME: "SINGLE", T_Spin.NONE: 1, T_Spin.MINI: 2, T_Spin.T_SPIN: 8},
{LINES_CLEAR_NAME: "DOUBLE", T_Spin.NONE: 3, T_Spin.T_SPIN: 12},
{LINES_CLEAR_NAME: "TRIPLE", T_Spin.NONE: 5, T_Spin.T_SPIN: 16},
{LINES_CLEAR_NAME: "TETRIS", T_Spin.NONE: 8},
)
def lock(self):
def pattern_phase(self):
self.phase = Phase.PATTERN
self.matrix.piece.prelocked = False
self.stop(self.lock)
self.stop(self.pattern_phase)
self.stop(self.fall)
# Piece unlocked
if self.can_move(self.matrix.piece.coord + Movement.DOWN, (mino.coord for mino in self.matrix.piece)):
if self.space_to_move(
self.matrix.piece.coord + Movement.DOWN,
(mino.coord for mino in self.matrix.piece),
):
return
# Game over
if all((mino.coord + self.matrix.piece.coord).y >= self.matrix.lines for mino in self.matrix.piece):
if all(
(mino.coord + self.matrix.piece.coord).y >= self.matrix.lines
for mino in self.matrix.piece
):
self.game_over()
return
@ -305,13 +314,13 @@ class TetrisLogic:
coord = mino.coord + self.matrix.piece.coord
if coord.y <= self.matrix.lines + 3:
self.matrix[coord.y][coord.x] = mino
self.on_locked(self.matrix.piece)
self.on_locked(self.matrix, self.matrix.piece)
self.pattern_phase()
def pattern_phase(self):
# T-Spin
if type(self.matrix.piece) == T_Tetrimino and self.matrix.piece.last_rotation_point is not None:
if (
type(self.matrix.piece) == T_Tetrimino
and self.matrix.piece.last_rotation_point is not None
):
a = self.is_t_slot(0)
b = self.is_t_slot(1)
c = self.is_t_slot(3)
@ -330,38 +339,16 @@ class TetrisLogic:
for y, line in reversed(list(enumerate(self.matrix))):
if all(mino for mino in line):
lines_cleared += 1
self.on_line_remove(y)
self.on_line_remove(self.matrix, y)
self.matrix.pop(y)
self.matrix.append_new_line()
if lines_cleared:
self.stats.lines_cleared += lines_cleared
# Scoring
lock_strings = []
lock_score = 0
if t_spin:
lock_strings.append(t_spin)
if lines_cleared:
lock_strings.append(self.SCORES[lines_cleared][LINES_CLEAR_NAME])
self.stats.combo += 1
else:
self.stats.combo = -1
if lines_cleared or t_spin:
ds = self.SCORES[lines_cleared][t_spin]
self.stats.goal -= ds
ds *= 100 * self.stats.level
lock_score += ds
lock_strings.append(str(ds))
self.show_text("\n".join(lock_strings))
if self.stats.combo >= 1:
ds = (20 if lines_cleared == 1 else 50) * self.stats.combo * self.stats.level
lock_score += ds
self.show_text("COMBO x{:n}\n{:n}".format(self.stats.combo, ds))
self.stats.score += lock_score
pattern_name, pattern_score, nb_combo, combo_score = self.stats.pattern_phase(
t_spin, lines_cleared
)
self.on_pattern_phase(pattern_name, pattern_score, nb_combo, combo_score)
if self.stats.goal <= 0:
self.new_level()
@ -371,62 +358,73 @@ class TetrisLogic:
if self.pressed_actions:
self.start(self.repeat_action, self.AUTOREPEAT_DELAY)
def on_locked(piece):
def on_locked(self, matrix, locked_piece):
pass
def on_line_remove(self, y):
def on_line_remove(self, matrix, y):
pass
def can_move(self, potential_coord, minoes_coords):
return all(self.matrix.cell_is_free(potential_coord + mino_coord) for mino_coord in minoes_coords)
def on_pattern_phase(self, pattern_name, pattern_score, nb_combo, combo_score):
pass
def move_left(self):
self.move(Movement.LEFT)
def move_right(self):
self.move(Movement.RIGHT)
def rotate_clockwise(self):
self.rotate(Rotation.CLOCKWISE)
def rotate_counter(self):
self.rotate(Rotation.COUNTER)
def soft_drop(self):
moved = self.move(Movement.DOWN)
if moved:
self.stats.score += 1
return moved
def hard_drop(self):
while self.move(Movement.DOWN, lock=False):
self.stats.score += 2
self.pattern_phase()
T_SLOT_COORDS = (Coord(-1, 1), Coord(1, 1), Coord(-1, 1), Coord(-1, -1))
def is_t_slot(self, n):
t_slot_coord = self.matrix.piece.coord + self.T_SLOT_COORDS[(self.matrix.piece.orientation + n) % 4]
t_slot_coord = (
self.matrix.piece.coord
+ self.T_SLOT_COORDS[(self.matrix.piece.orientation + n) % 4]
)
return not self.matrix.cell_is_free(t_slot_coord)
def swap(self):
if self.matrix.piece.hold_enabled:
self.matrix.piece.hold_enabled = False
self.matrix.piece.prelocked = False
self.stop(self.lock)
self.matrix.piece, self.held.piece = self.held.piece, self.matrix.piece
self.held.piece.coord = self.HELD_PIECE_COORD
if type(self.held.piece) == I_Tetrimino:
self.held.piece.coord += Movement.LEFT
for mino, coord in zip(self.held.piece, self.held.piece.MINOES_COORDS):
mino.coord = coord
if self.matrix.piece:
self.matrix.piece.coord = self.MATRIX_PIECE_COORD
self.matrix.ghost = self.matrix.piece.ghost()
self.move_ghost()
else:
self.generation_phase()
def pause(self):
self.state = State.PAUSED
self.phase = Phase.PAUSED
self.stop_all()
self.pressed_actions = []
self.auto_repeat = False
self.stop(self.repeat_action)
def resume(self):
self.state = State.PLAYING
self.phase = Phase.FALLING
self.start(self.fall, self.stats.fall_delay)
if self.matrix.piece.prelocked:
self.start(self.lock, self.stats.lock_delay)
if self.phase == Phase.LOCK:
self.start(self.pattern_phase, self.stats.lock_delay)
self.start(self.stats.update_time, 1)
def game_over(self):
self.state = State.OVER
self.phase = Phase.OVER
self.stop_all()
self.save_high_score()
self.on_game_over()
def on_game_over(self):
pass
def stop_all(self):
self.stop(self.fall)
self.stop(self.lock)
self.stop(self.pattern_phase)
self.stop(self.stats.update_time)
def do_action(self, action):

View File

@ -1,4 +1,6 @@
# -*- coding: utf-8 -*-
import random
from .utils import Coord, Rotation, Color
@ -14,9 +16,20 @@ class MetaTetromino(type):
Tetromino.shapes.append(cls)
class Tetromino(list):
class Tetromino:
shapes = []
random_bag = []
def __new__(cls):
if not cls.random_bag:
cls.random_bag = list(cls.shapes)
random.shuffle(cls.random_bag)
return cls.random_bag.pop()()
class TetrominoBase(list):
# Super rotation system
SRS = {
Rotation.CLOCKWISE: (
@ -44,7 +57,7 @@ class Tetromino(list):
return type(self)()
class O_Tetrimino(Tetromino, metaclass=MetaTetromino):
class O_Tetrimino(TetrominoBase, metaclass=MetaTetromino):
SRS = {
Rotation.CLOCKWISE: (tuple(), tuple(), tuple(), tuple()),
@ -57,7 +70,7 @@ class O_Tetrimino(Tetromino, metaclass=MetaTetromino):
return False
class I_Tetrimino(Tetromino, metaclass=MetaTetromino):
class I_Tetrimino(TetrominoBase, metaclass=MetaTetromino):
SRS = {
Rotation.CLOCKWISE: (
@ -77,31 +90,31 @@ class I_Tetrimino(Tetromino, metaclass=MetaTetromino):
MINOES_COLOR = Color.CYAN
class T_Tetrimino(Tetromino, metaclass=MetaTetromino):
class T_Tetrimino(TetrominoBase, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 0), Coord(0, 0), Coord(0, 1), Coord(1, 0))
MINOES_COLOR = Color.MAGENTA
class L_Tetrimino(Tetromino, metaclass=MetaTetromino):
class L_Tetrimino(TetrominoBase, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 0), Coord(0, 0), Coord(1, 0), Coord(1, 1))
MINOES_COLOR = Color.ORANGE
class J_Tetrimino(Tetromino, metaclass=MetaTetromino):
class J_Tetrimino(TetrominoBase, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 1), Coord(-1, 0), Coord(0, 0), Coord(1, 0))
MINOES_COLOR = Color.BLUE
class S_Tetrimino(Tetromino, metaclass=MetaTetromino):
class S_Tetrimino(TetrominoBase, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 0), Coord(0, 0), Coord(0, 1), Coord(1, 1))
MINOES_COLOR = Color.GREEN
class Z_Tetrimino(Tetromino, metaclass=MetaTetromino):
class Z_Tetrimino(TetrominoBase, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 1), Coord(0, 1), Coord(0, 0), Coord(1, 0))
MINOES_COLOR = Color.RED

View File

@ -37,3 +37,13 @@ class Color:
ORANGE = 4
RED = 5
YELLOW = 6
class Phase:
STARTING = "STARTING"
FALLING = "FALLING"
LOCK = "LOCK"
PATTERN = "PATTERN"
PAUSED = "PAUSED"
OVER = "OVER"