484 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# -*- coding: utf-8 -*-
 | 
						|
import random
 | 
						|
import pickle
 | 
						|
 | 
						|
from .utils import Coord, Movement, Rotation, T_Spin
 | 
						|
from .tetromino import Tetromino, T_Tetrimino, I_Tetrimino
 | 
						|
from .consts import (
 | 
						|
    LINES,
 | 
						|
    COLLUMNS,
 | 
						|
    NEXT_PIECES,
 | 
						|
    LOCK_DELAY,
 | 
						|
    FALL_DELAY,
 | 
						|
    AUTOREPEAT_DELAY,
 | 
						|
    AUTOREPEAT_PERIOD,
 | 
						|
    MATRIX_PIECE_COORD,
 | 
						|
    NEXT_PIECE_COORDS,
 | 
						|
    HELD_PIECE_COORD,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
LINES_CLEAR_NAME = "LINES_CLEAR_NAME"
 | 
						|
CRYPT_KEY = 987943759387540938469837689379857347598347598379584857934579343
 | 
						|
 | 
						|
 | 
						|
class State:
 | 
						|
 | 
						|
    STARTING = "STARTING"
 | 
						|
    PLAYING = "PLAYING"
 | 
						|
    PAUSED = "PAUSED"
 | 
						|
    OVER = "OVER"
 | 
						|
 | 
						|
 | 
						|
class PieceContainer:
 | 
						|
 | 
						|
    def __init__(self):
 | 
						|
        self.piece = None
 | 
						|
 | 
						|
 | 
						|
class HoldQueue(PieceContainer):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class Matrix(list, PieceContainer):
 | 
						|
 | 
						|
    def __init__(self, lines, collumns):
 | 
						|
        list.__init__(self)
 | 
						|
        PieceContainer.__init__(self)
 | 
						|
        self.lines = lines
 | 
						|
        self.collumns = collumns
 | 
						|
 | 
						|
    def reset(self):
 | 
						|
        self.clear()
 | 
						|
        for y in range(self.lines + 3):
 | 
						|
            self.append_new_line()
 | 
						|
 | 
						|
    def append_new_line(self):
 | 
						|
        self.append([None for x in range(self.collumns)])
 | 
						|
 | 
						|
    def cell_is_free(self, coord):
 | 
						|
        return 0 <= coord.x < self.collumns and 0 <= coord.y and not self[coord.y][coord.x]
 | 
						|
 | 
						|
 | 
						|
class NextQueue(PieceContainer):
 | 
						|
 | 
						|
    def __init__(self, nb_pieces):
 | 
						|
        super().__init__()
 | 
						|
        self.nb_pieces = nb_pieces
 | 
						|
        self.pieces = []
 | 
						|
 | 
						|
 | 
						|
class Stats:
 | 
						|
 | 
						|
    def _get_score(self):
 | 
						|
        return self._score
 | 
						|
 | 
						|
    def _set_score(self, new_score):
 | 
						|
        self._score = new_score
 | 
						|
        if self._score > self.high_score:
 | 
						|
            self.high_score = self._score
 | 
						|
 | 
						|
    score = property(_get_score, _set_score)
 | 
						|
 | 
						|
    def __init__(self):
 | 
						|
        self._score = 0
 | 
						|
        self.time = 0
 | 
						|
 | 
						|
    def new_game(self, level):
 | 
						|
        self.level = level - 1
 | 
						|
        self.score = 0
 | 
						|
        self.lines_cleared = 0
 | 
						|
        self.goal = 0
 | 
						|
        self.time = 0
 | 
						|
        self.combo = -1
 | 
						|
 | 
						|
        self.lock_delay = LOCK_DELAY
 | 
						|
        self.fall_delay = FALL_DELAY
 | 
						|
 | 
						|
    def new_level(self):
 | 
						|
        self.level += 1
 | 
						|
        self.goal += 5 * self.level
 | 
						|
        if self.level <= 20:
 | 
						|
            self.fall_delay = pow(0.8 - ((self.level - 1) * 0.007), self.level - 1)
 | 
						|
        if self.level > 15:
 | 
						|
            self.lock_delay = 0.5 * pow(0.9, self.level - 15)
 | 
						|
 | 
						|
    def update_time(self):
 | 
						|
        self.time += 1
 | 
						|
 | 
						|
 | 
						|
class TetrisLogic:
 | 
						|
 | 
						|
    LINES = LINES
 | 
						|
    COLLUMNS = COLLUMNS
 | 
						|
    NEXT_PIECES = NEXT_PIECES
 | 
						|
    AUTOREPEAT_DELAY = AUTOREPEAT_DELAY
 | 
						|
    AUTOREPEAT_PERIOD = AUTOREPEAT_PERIOD
 | 
						|
    MATRIX_PIECE_COORD = MATRIX_PIECE_COORD
 | 
						|
    NEXT_PIECE_COORDS = NEXT_PIECE_COORDS
 | 
						|
    HELD_PIECE_COORD = HELD_PIECE_COORD
 | 
						|
    random_bag = []
 | 
						|
 | 
						|
    def __init__(
 | 
						|
            self,
 | 
						|
            lines=LINES,
 | 
						|
            collumns=COLLUMNS,
 | 
						|
            next_pieces=NEXT_PIECES,
 | 
						|
            ):
 | 
						|
        self.stats = Stats()
 | 
						|
        self.load_high_score()
 | 
						|
        self.state = State.STARTING
 | 
						|
        self.held = HoldQueue()
 | 
						|
        self.matrix = Matrix(lines, collumns)
 | 
						|
        self.matrix.ghost = None
 | 
						|
        self.next = NextQueue(next_pieces)
 | 
						|
        self.autorepeatable_actions = (self.move_left, self.move_right, self.soft_drop)
 | 
						|
        self.pressed_actions = []
 | 
						|
 | 
						|
    def new_game(self, level=1):
 | 
						|
        self.stats.new_game(level)
 | 
						|
 | 
						|
        self.pressed_actions = []
 | 
						|
        self.auto_repeat = False
 | 
						|
 | 
						|
        self.matrix.reset()
 | 
						|
        self.next.pieces = [self.new_piece() for n in range(self.next.nb_pieces)]
 | 
						|
        self.held.piece = None
 | 
						|
        self.state = State.PLAYING
 | 
						|
        self.start(self.stats.update_time, 1)
 | 
						|
 | 
						|
        self.on_new_game()
 | 
						|
 | 
						|
        self.new_level()
 | 
						|
 | 
						|
    def on_new_game(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    def new_piece(self):
 | 
						|
        if not self.random_bag:
 | 
						|
            self.random_bag = list(Tetromino.shapes)
 | 
						|
            random.shuffle(self.random_bag)
 | 
						|
        piece = self.random_bag.pop()()
 | 
						|
        self.on_new_piece(piece)
 | 
						|
        return piece
 | 
						|
 | 
						|
    def on_new_piece(self, piece):
 | 
						|
        pass
 | 
						|
 | 
						|
    def new_level(self):
 | 
						|
        self.stats.new_level()
 | 
						|
        self.restart(self.fall, self.stats.fall_delay)
 | 
						|
 | 
						|
        self.on_new_level(self.stats.level)
 | 
						|
 | 
						|
        self.generation_phase()
 | 
						|
 | 
						|
    def on_new_level(self, level):
 | 
						|
        pass
 | 
						|
 | 
						|
    def generation_phase(self):
 | 
						|
        self.matrix.piece = self.next.pieces.pop(0)
 | 
						|
        self.matrix.piece.coord = self.MATRIX_PIECE_COORD
 | 
						|
        self.matrix.ghost = self.matrix.piece.ghost()
 | 
						|
        self.move_ghost()
 | 
						|
        self.next.pieces.append(self.new_piece())
 | 
						|
        self.next.pieces[-1].coord = self.NEXT_PIECE_COORDS[-1]
 | 
						|
        for tetromino, coord in zip(self.next.pieces, self.NEXT_PIECE_COORDS):
 | 
						|
            tetromino.coord = coord
 | 
						|
 | 
						|
        self.on_generation_phase(self.matrix.piece)
 | 
						|
        self.on_falling_phase()
 | 
						|
 | 
						|
        if not self.can_move(self.matrix.piece.coord, (mino.coord for mino in self.matrix.piece)):
 | 
						|
            self.game_over()
 | 
						|
 | 
						|
    def on_generation_phase(self, piece):
 | 
						|
        pass
 | 
						|
 | 
						|
    def on_falling_phase(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    def move_left(self):
 | 
						|
        self.move(Movement.LEFT)
 | 
						|
 | 
						|
    def move_right(self):
 | 
						|
        self.move(Movement.RIGHT)
 | 
						|
 | 
						|
    def rotate_clockwise(self):
 | 
						|
        self.rotate(Rotation.CLOCKWISE)
 | 
						|
 | 
						|
    def rotate_counter(self):
 | 
						|
        self.rotate(Rotation.COUNTER)
 | 
						|
 | 
						|
    def move_ghost(self):
 | 
						|
        self.matrix.ghost.coord = self.matrix.piece.coord
 | 
						|
        for ghost_mino, current_mino in zip(self.matrix.ghost, self.matrix.piece):
 | 
						|
            ghost_mino.coord = current_mino.coord
 | 
						|
        while self.can_move(self.matrix.ghost.coord + Movement.DOWN, (mino.coord for mino in self.matrix.ghost)):
 | 
						|
            self.matrix.ghost.coord += Movement.DOWN
 | 
						|
 | 
						|
    def soft_drop(self):
 | 
						|
        moved = self.move(Movement.DOWN)
 | 
						|
        if moved:
 | 
						|
            self.stats.score += 1
 | 
						|
        return moved
 | 
						|
 | 
						|
    def hard_drop(self):
 | 
						|
        while self.move(Movement.DOWN, prelock=False):
 | 
						|
            self.stats.score += 2
 | 
						|
        self.lock()
 | 
						|
 | 
						|
    def fall(self):
 | 
						|
        self.move(Movement.DOWN)
 | 
						|
 | 
						|
    def move(self, movement, prelock=True):
 | 
						|
        potential_coord = self.matrix.piece.coord + movement
 | 
						|
        if self.can_move(potential_coord, (mino.coord for mino in self.matrix.piece)):
 | 
						|
            if self.matrix.piece.prelocked:
 | 
						|
                self.restart(self.lock, self.stats.lock_delay)
 | 
						|
            self.matrix.piece.coord = potential_coord
 | 
						|
            if not movement == Movement.DOWN:
 | 
						|
                self.matrix.piece.last_rotation_point = None
 | 
						|
            self.move_ghost()
 | 
						|
            self.on_moved(movement)
 | 
						|
            return True
 | 
						|
        else:
 | 
						|
            if prelock and not self.matrix.piece.prelocked and movement == Movement.DOWN:
 | 
						|
                self.matrix.piece.prelocked = True
 | 
						|
                self.start(self.lock, self.stats.lock_delay)
 | 
						|
                self.on_lock_phase()
 | 
						|
            return False
 | 
						|
 | 
						|
    def on_moved(self, movement):
 | 
						|
        pass
 | 
						|
 | 
						|
    def rotate(self, rotation):
 | 
						|
        rotated_coords = tuple(Coord(rotation * mino.coord.y, -rotation * mino.coord.x) for mino in self.matrix.piece)
 | 
						|
        for rotation_point, liberty_degree in enumerate(self.matrix.piece.SRS[rotation][self.matrix.piece.orientation], start=1):
 | 
						|
            potential_coord = self.matrix.piece.coord + liberty_degree
 | 
						|
            if self.can_move(potential_coord, rotated_coords):
 | 
						|
                if self.matrix.piece.prelocked:
 | 
						|
                    self.restart(self.lock, self.stats.lock_delay)
 | 
						|
                self.matrix.piece.coord = potential_coord
 | 
						|
                for mino, coord in zip(self.matrix.piece, rotated_coords):
 | 
						|
                    mino.coord = coord
 | 
						|
                self.matrix.piece.orientation = (self.matrix.piece.orientation + rotation) % 4
 | 
						|
                self.matrix.piece.last_rotation_point = rotation_point
 | 
						|
                self.move_ghost()
 | 
						|
                self.on_rotated(rotation)
 | 
						|
                return True
 | 
						|
        else:
 | 
						|
            return False
 | 
						|
 | 
						|
    def on_rotated(self, direction):
 | 
						|
        pass
 | 
						|
 | 
						|
    def on_lock_phase(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    SCORES = (
 | 
						|
        {LINES_CLEAR_NAME: "", T_Spin.NONE: 0, T_Spin.MINI: 1, T_Spin.T_SPIN: 4},
 | 
						|
        {LINES_CLEAR_NAME: "SINGLE", T_Spin.NONE: 1, T_Spin.MINI: 2, T_Spin.T_SPIN: 8},
 | 
						|
        {LINES_CLEAR_NAME: "DOUBLE", T_Spin.NONE: 3, T_Spin.T_SPIN: 12},
 | 
						|
        {LINES_CLEAR_NAME: "TRIPLE", T_Spin.NONE: 5, T_Spin.T_SPIN: 16},
 | 
						|
        {LINES_CLEAR_NAME: "TETRIS", T_Spin.NONE: 8},
 | 
						|
    )
 | 
						|
 | 
						|
    def lock(self):
 | 
						|
        self.matrix.piece.prelocked = False
 | 
						|
        self.stop(self.lock)
 | 
						|
 | 
						|
        # Piece unlocked
 | 
						|
        if self.can_move(self.matrix.piece.coord + Movement.DOWN, (mino.coord for mino in self.matrix.piece)):
 | 
						|
            return
 | 
						|
 | 
						|
        # Game over
 | 
						|
        if all((mino.coord + self.matrix.piece.coord).y >= self.matrix.lines for mino in self.matrix.piece):
 | 
						|
            self.game_over()
 | 
						|
            return
 | 
						|
 | 
						|
        if self.pressed_actions:
 | 
						|
            self.auto_repeat = False
 | 
						|
 | 
						|
        # T-Spin
 | 
						|
        if type(self.matrix.piece) == T_Tetrimino and self.matrix.piece.last_rotation_point is not None:
 | 
						|
            a = self.is_t_slot(0)
 | 
						|
            b = self.is_t_slot(1)
 | 
						|
            c = self.is_t_slot(3)
 | 
						|
            d = self.is_t_slot(2)
 | 
						|
            if self.matrix.piece.last_rotation_point == 5 or (a and b and (c or d)):
 | 
						|
                t_spin = T_Spin.T_SPIN
 | 
						|
            elif c and d and (a or b):
 | 
						|
                t_spin = T_Spin.MINI
 | 
						|
            else:
 | 
						|
                t_spin = T_Spin.NONE
 | 
						|
        else:
 | 
						|
            t_spin = T_Spin.NONE
 | 
						|
 | 
						|
        for mino in self.matrix.piece:
 | 
						|
            coord = mino.coord + self.matrix.piece.coord
 | 
						|
            if coord.y <= self.matrix.lines + 3:
 | 
						|
                self.matrix[coord.y][coord.x] = mino
 | 
						|
        self.on_locked(self.matrix.piece)
 | 
						|
 | 
						|
        # Clear complete lines
 | 
						|
        lines_cleared = 0
 | 
						|
        for y, line in reversed(list(enumerate(self.matrix))):
 | 
						|
            if all(mino for mino in line):
 | 
						|
                lines_cleared += 1
 | 
						|
                self.remove_line(y)
 | 
						|
                self.matrix.append_new_line()
 | 
						|
        if lines_cleared:
 | 
						|
            self.stats.lines_cleared += lines_cleared
 | 
						|
 | 
						|
        # Scoring
 | 
						|
        lock_strings = []
 | 
						|
        lock_score = 0
 | 
						|
 | 
						|
        if t_spin:
 | 
						|
            lock_strings.append(t_spin)
 | 
						|
        if lines_cleared:
 | 
						|
            lock_strings.append(self.SCORES[lines_cleared][LINES_CLEAR_NAME])
 | 
						|
            self.stats.combo += 1
 | 
						|
        else:
 | 
						|
            self.stats.combo = -1
 | 
						|
 | 
						|
        if lines_cleared or t_spin:
 | 
						|
            ds = self.SCORES[lines_cleared][t_spin]
 | 
						|
            self.stats.goal -= ds
 | 
						|
            ds *= 100 * self.stats.level
 | 
						|
            lock_score += ds
 | 
						|
            lock_strings.append(str(ds))
 | 
						|
            self.show_text("\n".join(lock_strings))
 | 
						|
 | 
						|
        if self.stats.combo >= 1:
 | 
						|
            ds = (20 if lines_cleared == 1 else 50) * self.stats.combo * self.stats.level
 | 
						|
            lock_score += ds
 | 
						|
            self.show_text("COMBO x{:n}\n{:n}".format(self.stats.combo, ds))
 | 
						|
 | 
						|
        self.stats.score += lock_score
 | 
						|
 | 
						|
        if self.stats.goal <= 0:
 | 
						|
            self.new_level()
 | 
						|
        else:
 | 
						|
            self.generation_phase()
 | 
						|
 | 
						|
        if self.auto_repeat:
 | 
						|
            self.restart(self.repeat_action, self.AUTOREPEAT_DELAY)
 | 
						|
 | 
						|
    def on_locked(piece):
 | 
						|
        pass
 | 
						|
 | 
						|
    def remove_line(self, y):
 | 
						|
        self.matrix.pop(y)
 | 
						|
 | 
						|
    def can_move(self, potential_coord, minoes_coords):
 | 
						|
        return all(self.matrix.cell_is_free(potential_coord + mino_coord) for mino_coord in minoes_coords)
 | 
						|
 | 
						|
    T_SLOT_COORDS = (Coord(-1, 1), Coord(1, 1), Coord(-1, 1), Coord(-1, -1))
 | 
						|
 | 
						|
    def is_t_slot(self, n):
 | 
						|
        t_slot_coord = self.matrix.piece.coord + self.T_SLOT_COORDS[(self.matrix.piece.orientation + n) % 4]
 | 
						|
        return not self.matrix.cell_is_free(t_slot_coord)
 | 
						|
 | 
						|
    def swap(self):
 | 
						|
        if self.matrix.piece.hold_enabled:
 | 
						|
            self.matrix.piece.hold_enabled = False
 | 
						|
            self.matrix.piece.prelocked = False
 | 
						|
            self.stop(self.lock)
 | 
						|
            self.matrix.piece, self.held.piece = self.held.piece, self.matrix.piece
 | 
						|
            self.held.piece.coord = self.HELD_PIECE_COORD
 | 
						|
            if type(self.held.piece) == I_Tetrimino:
 | 
						|
                self.held.piece.coord += Movement.LEFT
 | 
						|
            for mino, coord in zip(self.held.piece, self.held.piece.MINOES_COORDS):
 | 
						|
                mino.coord = coord
 | 
						|
 | 
						|
            if self.matrix.piece:
 | 
						|
                self.matrix.piece.coord = self.MATRIX_PIECE_COORD
 | 
						|
                self.matrix.ghost = self.matrix.piece.ghost()
 | 
						|
                self.move_ghost()
 | 
						|
            else:
 | 
						|
                self.generation_phase()
 | 
						|
 | 
						|
    def pause(self):
 | 
						|
        self.state = State.PAUSED
 | 
						|
        self.stop_all()
 | 
						|
        self.pressed_actions = []
 | 
						|
        self.auto_repeat = False
 | 
						|
        self.stop(self.repeat_action)
 | 
						|
 | 
						|
    def resume(self):
 | 
						|
        self.state = State.PLAYING
 | 
						|
        self.start(self.fall, self.stats.fall_delay)
 | 
						|
        if self.matrix.piece.prelocked:
 | 
						|
            self.start(self.lock, self.stats.lock_delay)
 | 
						|
        self.start(self.stats.update_time, 1)
 | 
						|
 | 
						|
    def game_over(self):
 | 
						|
        self.state = State.OVER
 | 
						|
        self.stop_all()
 | 
						|
        self.save_high_score()
 | 
						|
 | 
						|
    def stop_all(self):
 | 
						|
        self.stop(self.fall)
 | 
						|
        self.stop(self.lock)
 | 
						|
        self.stop(self.stats.update_time)
 | 
						|
 | 
						|
    def do_action(self, action):
 | 
						|
        action()
 | 
						|
        if action in self.autorepeatable_actions:
 | 
						|
            self.auto_repeat = False
 | 
						|
            self.pressed_actions.append(action)
 | 
						|
            if action == self.soft_drop:
 | 
						|
                delay = self.stats.fall_delay / 20
 | 
						|
            else:
 | 
						|
                delay = self.AUTOREPEAT_DELAY
 | 
						|
            self.restart(self.repeat_action, delay)
 | 
						|
 | 
						|
    def repeat_action(self):
 | 
						|
        if self.pressed_actions:
 | 
						|
            self.pressed_actions[-1]()
 | 
						|
            if not self.auto_repeat:
 | 
						|
                self.auto_repeat = True
 | 
						|
                self.restart(self.repeat_action, self.AUTOREPEAT_PERIOD)
 | 
						|
        else:
 | 
						|
            self.auto_repeat = False
 | 
						|
            self.stop(self.repeat_action)
 | 
						|
 | 
						|
    def remove_action(self, action):
 | 
						|
        if action in self.autorepeatable_actions:
 | 
						|
            try:
 | 
						|
                self.pressed_actions.remove(action)
 | 
						|
            except ValueError:
 | 
						|
                pass
 | 
						|
 | 
						|
    def show_text(self, text):
 | 
						|
        print(text)
 | 
						|
        raise Warning("TetrisLogic.show_text not implemented.")
 | 
						|
 | 
						|
    def load_high_score(self, crypted_high_score=None):
 | 
						|
        if crypted_high_score:
 | 
						|
            crypted_high_score = int(pickle.loads(crypted_high_score))
 | 
						|
            self.stats.high_score = crypted_high_score ^ CRYPT_KEY
 | 
						|
        else:
 | 
						|
            raise Warning(
 | 
						|
                """TetrisLogic.load_high_score not implemented.
 | 
						|
High score is set to 0"""
 | 
						|
            )
 | 
						|
            self.stats.high_score = 0
 | 
						|
 | 
						|
    def save_high_score(self):
 | 
						|
        crypted_high_score = self.stats.high_score ^ CRYPT_KEY
 | 
						|
        crypted_high_score = pickle.dumps(crypted_high_score)
 | 
						|
        return crypted_high_score
 | 
						|
 | 
						|
    def start(task, period):
 | 
						|
        raise Warning("TetrisLogic.start is not implemented.")
 | 
						|
 | 
						|
    def stop(self, task):
 | 
						|
        raise Warning("TetrisLogic.stop is not implemented.")
 | 
						|
 | 
						|
    def restart(self, task, period):
 | 
						|
        self.stop(task)
 | 
						|
        self.start(task, period)
 |