313 lines
10 KiB
Python

"""
Create a maze using a depth-first search maze generation algorithm.
For more information on this algorithm see:
http://www.algosome.com/articles/maze-generation-depth-first.html
...or search up some other examples.
Artwork from http://kenney.nl
If Python and Arcade are installed, this example can be run from the command line with:
python -m arcade.examples.maze_depth_first
"""
import random
import arcade
import timeit
import os
NATIVE_SPRITE_SIZE = 128
SPRITE_SCALING = 0.25
SPRITE_SIZE = NATIVE_SPRITE_SIZE * SPRITE_SCALING
SCREEN_WIDTH = 1000
SCREEN_HEIGHT = 700
SCREEN_TITLE = "Maze Depth First Example"
MOVEMENT_SPEED = 8
TILE_EMPTY = 0
TILE_CRATE = 1
# Maze must have an ODD number of rows and columns.
# Walls go on EVEN rows/columns.
# Openings go on ODD rows/columns
MAZE_HEIGHT = 51
MAZE_WIDTH = 51
MERGE_SPRITES = True
# How many pixels to keep as a minimum margin between the character
# and the edge of the screen.
VIEWPORT_MARGIN = 200
def _create_grid_with_cells(width, height):
""" Create a grid with empty cells on odd row/column combinations. """
grid = []
for row in range(height):
grid.append([])
for column in range(width):
if column % 2 == 1 and row % 2 == 1:
grid[row].append(TILE_EMPTY)
elif column == 0 or row == 0 or column == width - 1 or row == height - 1:
grid[row].append(TILE_CRATE)
else:
grid[row].append(TILE_CRATE)
return grid
def make_maze_depth_first(maze_width, maze_height):
maze = _create_grid_with_cells(maze_width, maze_height)
w = (len(maze[0]) - 1) // 2
h = (len(maze) - 1) // 2
vis = [[0] * w + [1] for _ in range(h)] + [[1] * (w + 1)]
def walk(x, y):
vis[y][x] = 1
d = [(x - 1, y), (x, y + 1), (x + 1, y), (x, y - 1)]
random.shuffle(d)
for (xx, yy) in d:
if vis[yy][xx]:
continue
if xx == x:
maze[max(y, yy) * 2][x * 2 + 1] = TILE_EMPTY
if yy == y:
maze[y * 2 + 1][max(x, xx) * 2] = TILE_EMPTY
walk(xx, yy)
walk(random.randrange(w), random.randrange(h))
return maze
class MyGame(arcade.Window):
""" Main application class. """
def __init__(self, width, height, title):
"""
Initializer
"""
super().__init__(width, height, title)
# Set the working directory (where we expect to find files) to the same
# directory this .py file is in. You can leave this out of your own
# code, but it is needed to easily run the examples using "python -m"
# as mentioned at the top of this program.
file_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(file_path)
# Sprite lists
self.player_list = None
self.wall_list = None
# Player info
self.score = 0
self.player_sprite = None
# Physics engine
self.physics_engine = None
# Used to scroll
self.view_bottom = 0
self.view_left = 0
# Time to process
self.processing_time = 0
self.draw_time = 0
def setup(self):
""" Set up the game and initialize the variables. """
# Sprite lists
self.player_list = arcade.SpriteList()
self.wall_list = arcade.SpriteList()
self.score = 0
# Create the maze
maze = make_maze_depth_first(MAZE_WIDTH, MAZE_HEIGHT)
# Create sprites based on 2D grid
if not MERGE_SPRITES:
# This is the simple-to-understand method. Each grid location
# is a sprite.
for row in range(MAZE_HEIGHT):
for column in range(MAZE_WIDTH):
if maze[row][column] == 1:
wall = arcade.Sprite("images/grassCenter.png", SPRITE_SCALING)
wall.center_x = column * SPRITE_SIZE + SPRITE_SIZE / 2
wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2
self.wall_list.append(wall)
else:
# This uses new Arcade 1.3.1 features, that allow me to create a
# larger sprite with a repeating texture. So if there are multiple
# cells in a row with a wall, we merge them into one sprite, with a
# repeating texture for each cell. This reduces our sprite count.
for row in range(MAZE_HEIGHT):
column = 0
while column < len(maze):
while column < len(maze) and maze[row][column] == 0:
column += 1
start_column = column
while column < len(maze) and maze[row][column] == 1:
column += 1
end_column = column - 1
column_count = end_column - start_column + 1
column_mid = (start_column + end_column) / 2
wall = arcade.Sprite("images/grassCenter.png", SPRITE_SCALING,
repeat_count_x=column_count)
wall.center_x = column_mid * SPRITE_SIZE + SPRITE_SIZE / 2
wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2
wall.width = SPRITE_SIZE * column_count
self.wall_list.append(wall)
# Set up the player
self.player_sprite = arcade.Sprite("images/character.png", SPRITE_SCALING)
self.player_list.append(self.player_sprite)
# Randomly place the player. If we are in a wall, repeat until we aren't.
placed = False
while not placed:
# Randomly position
self.player_sprite.center_x = random.randrange(MAZE_WIDTH * SPRITE_SIZE)
self.player_sprite.center_y = random.randrange(MAZE_HEIGHT * SPRITE_SIZE)
# Are we in a wall?
walls_hit = arcade.check_for_collision_with_list(self.player_sprite, self.wall_list)
if len(walls_hit) == 0:
# Not in a wall! Success!
placed = True
self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.wall_list)
# Set the background color
arcade.set_background_color(arcade.color.AMAZON)
# Set the viewport boundaries
# These numbers set where we have 'scrolled' to.
self.view_left = 0
self.view_bottom = 0
print(f"Total wall blocks: {len(self.wall_list)}")
def on_draw(self):
"""
Render the screen.
"""
# This command has to happen before we start drawing
arcade.start_render()
# Start timing how long this takes
draw_start_time = timeit.default_timer()
# Draw all the sprites.
self.wall_list.draw()
self.player_list.draw()
# Draw info on the screen
sprite_count = len(self.wall_list)
output = f"Sprite Count: {sprite_count}"
arcade.draw_text(output,
self.view_left + 20,
SCREEN_HEIGHT - 20 + self.view_bottom,
arcade.color.WHITE, 16)
output = f"Drawing time: {self.draw_time:.3f}"
arcade.draw_text(output,
self.view_left + 20,
SCREEN_HEIGHT - 40 + self.view_bottom,
arcade.color.WHITE, 16)
output = f"Processing time: {self.processing_time:.3f}"
arcade.draw_text(output,
self.view_left + 20,
SCREEN_HEIGHT - 60 + self.view_bottom,
arcade.color.WHITE, 16)
self.draw_time = timeit.default_timer() - draw_start_time
def on_key_press(self, key, modifiers):
"""Called whenever a key is pressed. """
if key == arcade.key.UP:
self.player_sprite.change_y = MOVEMENT_SPEED
elif key == arcade.key.DOWN:
self.player_sprite.change_y = -MOVEMENT_SPEED
elif key == arcade.key.LEFT:
self.player_sprite.change_x = -MOVEMENT_SPEED
elif key == arcade.key.RIGHT:
self.player_sprite.change_x = MOVEMENT_SPEED
def on_key_release(self, key, modifiers):
"""Called when the user releases a key. """
if key == arcade.key.UP or key == arcade.key.DOWN:
self.player_sprite.change_y = 0
elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
self.player_sprite.change_x = 0
def update(self, delta_time):
""" Movement and game logic """
start_time = timeit.default_timer()
# Call update on all sprites (The sprites don't do much in this
# example though.)
self.physics_engine.update()
# --- Manage Scrolling ---
# Track if we need to change the viewport
changed = False
# Scroll left
left_bndry = self.view_left + VIEWPORT_MARGIN
if self.player_sprite.left < left_bndry:
self.view_left -= left_bndry - self.player_sprite.left
changed = True
# Scroll right
right_bndry = self.view_left + SCREEN_WIDTH - VIEWPORT_MARGIN
if self.player_sprite.right > right_bndry:
self.view_left += self.player_sprite.right - right_bndry
changed = True
# Scroll up
top_bndry = self.view_bottom + SCREEN_HEIGHT - VIEWPORT_MARGIN
if self.player_sprite.top > top_bndry:
self.view_bottom += self.player_sprite.top - top_bndry
changed = True
# Scroll down
bottom_bndry = self.view_bottom + VIEWPORT_MARGIN
if self.player_sprite.bottom < bottom_bndry:
self.view_bottom -= bottom_bndry - self.player_sprite.bottom
changed = True
if changed:
arcade.set_viewport(self.view_left,
SCREEN_WIDTH + self.view_left,
self.view_bottom,
SCREEN_HEIGHT + self.view_bottom)
# Save the time it took to do this.
self.processing_time = timeit.default_timer() - start_time
def main():
""" Main method """
window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)
window.setup()
arcade.run()
if __name__ == "__main__":
main()