TetrArcade/tetrislogic.py
2019-09-29 14:06:31 +02:00

573 lines
17 KiB
Python

# -*- coding: utf-8 -*-
import random
# Matrix
NB_LINES = 20
NB_COLS = 10
NB_NEXT_PIECES = 5
# Delays (seconds)
LOCK_DELAY = 0.5
FALL_DELAY = 1
AUTOREPEAT_DELAY = 0.200 # Official : 0.300
AUTOREPEAT_PERIOD = 0.010 # Official : 0.010
LINES_CLEAR_NAME = "LINES_CLEAR_NAME"
class Coord:
def __init__(self, x, y):
self.x = x
self.y = y
def __add__(self, other):
return Coord(self.x+other.x, self.y+other.y)
# Piece init coord
MATRIX_PIECE_INIT_COORD = Coord(4, NB_LINES)
NEXT_PIECES_COORDS = [
Coord(NB_COLS+6, NB_LINES-4*n-3)
for n in range(NB_NEXT_PIECES)
]
HELD_PIECE_COORD = Coord(-7, NB_LINES-3)
HELD_I_COORD = Coord(-7, NB_LINES-3)
class State:
STARTING = "starting"
PLAYING = "playing"
PAUSED = "paused"
OVER = "over"
class Movement:
LEFT = Coord(-1, 0)
RIGHT = Coord( 1, 0)
DOWN = Coord( 0, -1)
class Rotation:
CLOCKWISE = 1
COUNTERCLOCKWISE = -1
class T_Spin:
NONE = ""
MINI = "MINI\nT-SPIN"
T_SPIN = "T-SPIN"
class Tetromino:
random_bag = []
class MetaTetromino(type):
def __init__(cls, name, bases, dico):
super().__init__(name, bases, dico)
cls.classes.append(cls)
class AbstractTetromino:
# Super rotation system
SRS = {
Rotation.COUNTERCLOCKWISE: (
(Coord(0, 0), Coord(1, 0), Coord(1, 1), Coord(0, -2), Coord(1, -2)),
(Coord(0, 0), Coord(1, 0), Coord(1, -1), Coord(0, 2), Coord(1, 2)),
(Coord(0, 0), Coord(-1, 0), Coord(-1, 1), Coord(0, -2), Coord(-1, -2)),
(Coord(0, 0), Coord(-1, 0), Coord(-1, -1), Coord(0, 2), Coord(-1, 2))
),
Rotation.CLOCKWISE: (
(Coord(0, 0), Coord(-1, 0), Coord(-1, 1), Coord(0, -2), Coord(-1, -2)),
(Coord(0, 0), Coord(1, 0), Coord(1, -1), Coord(0, 2), Coord(1, 2)),
(Coord(0, 0), Coord(1, 0), Coord(1, 1), Coord(0, -2), Coord(1, -2)),
(Coord(0, 0), Coord(-1, 0), Coord(-1, -1), Coord(0, -2), Coord(-1, 2))
)
}
CAN_SPIN = False
classes = []
def __init__(self):
self.coord = NEXT_PIECES_COORDS[-1]
self.minoes_coords = self.MINOES_COORDS
self.orientation = 0
self.last_rotation_point_used = None
self.hold_enabled = True
self.prelocked = False
def ghost(self):
return self.__class__()
def minoes_absolute_coord(self):
return [
mino_coord + self.coord
for mino_coord in self.minoes_coords
]
class O(AbstractTetromino, metaclass=MetaTetromino):
SRS = {
Rotation.COUNTERCLOCKWISE: (tuple(), tuple(), tuple(), tuple()),
Rotation.CLOCKWISE: (tuple(), tuple(), tuple(), tuple())
}
MINOES_COORDS = (Coord(0, 0), Coord(1, 0), Coord(0, 1), Coord(1, 1))
MINOES_COLOR = "yellow"
def rotate(self, direction):
return False
class I(AbstractTetromino, metaclass=MetaTetromino):
SRS = {
Rotation.COUNTERCLOCKWISE: (
(Coord(0, -1), Coord(-1, -1), Coord(2, -1), Coord(-1, 1), Coord(2, -2)),
(Coord(-1, 0), Coord(1, 0), Coord(-2, 0), Coord(1, 1), Coord(-2, -2)),
(Coord(0, 1), Coord(1, 1), Coord(-2, 1), Coord(1, -1), Coord(-2, 2)),
(Coord(1, 0), Coord(-1, 0), Coord(2, 0), Coord(-1, -1), Coord(2, 2))
),
Rotation.CLOCKWISE: (
(Coord(1, 0), Coord(-1, 0), Coord(2, 0), Coord(-1, -1), Coord(2, 2)),
(Coord(0, -1), Coord(-1, -1), Coord(2, -1), Coord(-1, 1), Coord(2, -2)),
(Coord(-1, 0), Coord(1, 0), Coord(-2, 0), Coord(1, 1), Coord(-2, -2)),
(Coord(0, -1), Coord(1, 1), Coord(-2, 1), Coord(1, -1), Coord(-2, 2))
)
}
MINOES_COORDS = (Coord(-1, 0), Coord(0, 0), Coord(1, 0), Coord(2, 0))
MINOES_COLOR = "cyan"
class T(AbstractTetromino, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 0), Coord(0, 0), Coord(0, 1), Coord(1, 0))
MINOES_COLOR = "magenta"
CAN_SPIN = True
class L(AbstractTetromino, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 0), Coord(0, 0), Coord(1, 0), Coord(1, 1))
MINOES_COLOR = "orange"
class J(AbstractTetromino, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 1), Coord(-1, 0), Coord(0, 0), Coord(1, 0))
MINOES_COLOR = "blue"
class S(AbstractTetromino, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 0), Coord(0, 0), Coord(0, 1), Coord(1, 1))
MINOES_COLOR = "green"
class Z(AbstractTetromino, metaclass=MetaTetromino):
MINOES_COORDS = (Coord(-1, 1), Coord(0, 1), Coord(0, 0), Coord(1, 0))
MINOES_COLOR = "red"
def __new__(cls):
if not cls.random_bag:
cls.random_bag = list(Tetromino.AbstractTetromino.classes)
random.shuffle(cls.random_bag)
return cls.random_bag.pop()()
class TetrisLogic():
def __init__(self):
self.load_high_score()
self.state = State.STARTING
self.matrix = []
self.next_pieces = []
self.current_piece = None
self.held_piece = None
self.time = 0
self.autorepeatable_actions = (self.move_left, self.move_right, self.soft_drop)
self.pressed_actions = []
self._score = 0
@property
def score(self):
return self._score
@score.setter
def score(self, new_score):
self._score = new_score
if self._score > self.high_score:
self.high_score = self._score
def new_game(self):
self.level = 0
self.score = 0
self.nb_lines = 0
self.goal = 0
self.time = 0
self.pressed_actions = []
self.auto_repeat = False
self.lock_delay = LOCK_DELAY
self.fall_delay = FALL_DELAY
self.new_matrix()
self.new_next_pieces()
self.current_piece = None
self.held_piece = None
self.state = State.PLAYING
self.start(self.update_time, 1)
self.new_level()
def new_next_pieces(self):
self.next_pieces = [Tetromino() for i in range(NB_NEXT_PIECES)]
def new_matrix(self):
self.matrix = []
for y in range(NB_LINES+3):
self.append_new_line_to_matrix()
def new_level(self):
self.level += 1
self.goal += 5 * self.level
if self.level <= 20:
self.fall_delay = pow(0.8 - ((self.level-1)*0.007), self.level-1)
if self.level > 15:
self.lock_delay = 0.5 * pow(0.9, self.level-15)
self.show_text("LEVEL\n{:n}".format(self.level))
self.restart(self.fall, self.fall_delay)
self.new_current_piece()
def new_current_piece(self):
self.current_piece = self.next_pieces.pop(0)
self.current_piece.coord = MATRIX_PIECE_INIT_COORD
self.ghost_piece = self.current_piece.ghost()
self.move_ghost()
self.next_pieces.append(Tetromino())
for piece, coord in zip (self.next_pieces, NEXT_PIECES_COORDS):
piece.coord = coord
if not self.can_move(
self.current_piece.coord,
self.current_piece.minoes_coords
):
self.game_over()
def move_left(self):
self.move(Movement.LEFT)
def move_right(self):
self.move(Movement.RIGHT)
def rotate_counterclockwise(self):
self.rotate(Rotation.COUNTERCLOCKWISE)
def rotate_clockwise(self):
self.rotate(Rotation.CLOCKWISE)
def move_ghost(self):
self.ghost_piece.coord = self.current_piece.coord
self.ghost_piece.minoes_coords = self.current_piece.minoes_coords
while self.can_move(
self.ghost_piece.coord + Movement.DOWN,
self.ghost_piece.minoes_coords
):
self.ghost_piece.coord += Movement.DOWN
def soft_drop(self):
if self.move(Movement.DOWN):
self.score += 1
return True
else:
return False
def hard_drop(self):
while self.move(Movement.DOWN, prelock=False):
self.score += 2
self.lock()
def fall(self):
self.move(Movement.DOWN)
def move(self, movement, prelock=True):
potential_coord = self.current_piece.coord + movement
if self.can_move(potential_coord, self.current_piece.minoes_coords):
if self.current_piece.prelocked:
self.restart(self.lock, self.lock_delay)
self.current_piece.coord = potential_coord
if not movement == Movement.DOWN:
self.current_piece.last_rotation_point_used = None
self.move_ghost()
return True
else:
if (
prelock and not self.current_piece.prelocked
and movement == Movement.DOWN
):
self.current_piece.prelocked = True
self.start(self.lock, self.lock_delay)
return False
def rotate(self, direction):
rotated_minoes_coords = tuple(
Coord(direction*mino_coord.y, -direction*mino_coord.x)
for mino_coord in self.current_piece.minoes_coords
)
for rotation_point, liberty_degree in enumerate(
self.current_piece.SRS[direction][self.current_piece.orientation],
start = 1
):
potential_coord = self.current_piece.coord + liberty_degree
if self.can_move(potential_coord, rotated_minoes_coords):
if self.current_piece.prelocked:
self.restart(self.lock, self.lock_delay)
self.current_piece.coord = potential_coord
self.current_piece.minoes_coords = rotated_minoes_coords
self.current_piece.orientation = (
(self.current_piece.orientation + direction) % 4
)
self.current_piece.last_rotation_point_used = rotation_point
self.move_ghost()
return True
else:
return False
SCORES = (
{LINES_CLEAR_NAME: "", T_Spin.NONE: 0, T_Spin.MINI: 1, T_Spin.T_SPIN: 4},
{LINES_CLEAR_NAME: "SINGLE", T_Spin.NONE: 1, T_Spin.MINI: 2, T_Spin.T_SPIN: 8},
{LINES_CLEAR_NAME: "DOUBLE", T_Spin.NONE: 3, T_Spin.T_SPIN: 12},
{LINES_CLEAR_NAME: "TRIPLE", T_Spin.NONE: 5, T_Spin.T_SPIN: 16},
{LINES_CLEAR_NAME: "TETRIS", T_Spin.NONE: 8}
)
def lock(self):
# Piece unlocked
if self.move(Movement.DOWN):
return
# Start lock
self.current_piece.prelocked = False
self.stop(self.lock)
if self.pressed_actions:
self.auto_repeat = False
self.restart(self.repeat_action, AUTOREPEAT_DELAY)
# Game over
if all(
(mino_coord + self.current_piece.coord).y >= NB_LINES
for mino_coord in self.current_piece.minoes_coords
):
self.game_over()
return
# T-Spin
if (
self.current_piece.CAN_SPIN
and self.current_piece.last_rotation_point_used is not None
):
a = self.is_t_slot(0)
b = self.is_t_slot(1)
c = self.is_t_slot(3)
d = self.is_t_slot(2)
if self.current_piece.last_rotation_point_used == 5 or (
a and b and (c or d)
):
t_spin = T_Spin.T_SPIN
elif c and d and (a or b):
t_spin = T_Spin.MINI
else:
t_spin = T_Spin.NONE
else:
t_spin = T_Spin.NONE
self.enter_the_matrix()
# Clear complete lines
nb_lines_cleared = 0
for y, line in reversed(list(enumerate(self.matrix))):
if all(mino for mino in line):
nb_lines_cleared += 1
self.remove_line_of_matrix(y)
self.append_new_line_to_matrix()
if nb_lines_cleared:
self.nb_lines += nb_lines_cleared
# Scoring
lock_strings = []
lock_score = 0
if t_spin:
lock_strings.append(t_spin)
if nb_lines_cleared:
lock_strings.append(self.SCORES[nb_lines_cleared][LINES_CLEAR_NAME])
self.combo += 1
else:
self.combo = -1
if nb_lines_cleared or t_spin:
ds = self.SCORES[nb_lines_cleared][t_spin]
self.goal -= ds
ds *= 100 * self.level
lock_score += ds
lock_strings.append(str(ds))
self.show_text("\n".join(lock_strings))
if self.combo >= 1:
ds = (20 if nb_lines_cleared==1 else 50) * self.combo * self.level
lock_score += ds
self.show_text("COMBO x{:n}\n{:n}".format(self.combo, ds))
self.score += lock_score
if self.goal <= 0:
self.new_level()
else:
self.new_current_piece()
def enter_the_matrix(self):
for mino_coord in self.current_piece.minoes_coords:
coord = mino_coord + self.current_piece.coord
if coord.y <= NB_LINES+3:
self.matrix[coord.y][coord.x] = self.current_piece.MINOES_COLOR
def append_new_line_to_matrix(self):
self.matrix.append([None for x in range(NB_COLS)])
def remove_line_of_matrix(self, line):
self.matrix.pop(line)
def can_move(self, potential_coord, minoes_coords):
return all(
self.cell_is_free(potential_coord+mino_coord)
for mino_coord in minoes_coords
)
def cell_is_free(self, coord):
return (
0 <= coord.x < NB_COLS
and 0 <= coord.y
and not self.matrix[coord.y][coord.x]
)
T_SLOT_COORDS = (
Coord(-1, 1),
Coord( 1, 1),
Coord(-1, 1),
Coord(-1, -1)
)
def is_t_slot(self, n):
t_slot_coord = self.current_piece.coord + self.T_SLOT_COORDS[
(self.current_piece.orientation + n) % 4
]
return not self.cell_is_free(t_slot_coord)
def swap(self):
if self.current_piece.hold_enabled:
self.current_piece.hold_enabled = False
self.current_piece.prelocked = False
self.stop(self.lock)
self.current_piece, self.held_piece = self.held_piece, self.current_piece
if self.held_piece.__class__ == Tetromino.I:
self.held_piece.coord = HELD_I_COORD
else:
self.held_piece.coord = HELD_PIECE_COORD
self.held_piece.minoes_coords = self.held_piece.MINOES_COORDS
if self.current_piece:
self.current_piece.coord = MATRIX_PIECE_INIT_COORD
self.ghost_piece = self.current_piece.ghost()
self.move_ghost()
else:
self.new_current_piece()
def pause(self):
self.state = State.PAUSED
self.stop(self.fall)
self.stop(self.lock)
self.stop(self.update_time)
self.pressed_actions = []
self.auto_repeat = False
self.stop(self.repeat_action)
def resume(self):
self.state = State.PLAYING
self.start(self.fall, self.fall_delay)
if self.current_piece.prelocked:
self.start(self.lock, self.lock_delay)
self.start(self.update_time, 1)
def game_over(self):
self.state = State.OVER
self.stop(self.fall)
self.stop(self.update_time)
self.stop(self.repeat_action)
self.save_high_score()
def update_time(self):
self.time += 1
def do_action(self, action):
action()
if action in self.autorepeatable_actions:
self.auto_repeat = False
self.pressed_actions.append(action)
self.restart(self.repeat_action, AUTOREPEAT_DELAY)
def repeat_action(self):
if self.pressed_actions:
self.pressed_actions[-1]()
if not self.auto_repeat:
self.auto_repeat = True
self.restart(self.repeat_action, AUTOREPEAT_PERIOD)
else:
self.auto_repeat = False
self.stop(self.repeat_action)
def remove_action(self, action):
if action in self.autorepeatable_actions:
try:
self.pressed_actions.remove(action)
except ValueError:
pass
def show_text(self, text):
print(text)
raise Warning("TetrisLogic.show_text not implemented.")
def load_high_score(self):
self.high_score = 0
raise Warning(
"""TetrisLogic.load_high_score not implemented.
High score is set to 0"""
)
def save_high_score(self):
print("High score: {:n}".format(self.high_score))
raise Warning(
"""TetrisLogic.save_high_score not implemented.
High score is not saved"""
)
def start(task, period):
raise Warning("TetrisLogic.start is not implemented.")
def stop(self, task):
raise Warning("TetrisLogic.stop is not implemented.")
def restart(self, task, period):
self.stop(task)
self.start(task, period)