505 lines
15 KiB
Python
505 lines
15 KiB
Python
# -*- coding: utf-8 -*-
|
|
import pickle
|
|
|
|
from .utils import Coord, Movement, Rotation, T_Spin, Phase
|
|
from .tetromino import Tetromino, T_Tetrimino
|
|
from .consts import (
|
|
LINES,
|
|
COLLUMNS,
|
|
NEXT_PIECES,
|
|
LOCK_DELAY,
|
|
FALL_DELAY,
|
|
AUTOREPEAT_DELAY,
|
|
AUTOREPEAT_PERIOD,
|
|
MATRIX_PIECE_COORD,
|
|
)
|
|
|
|
|
|
LINES_CLEAR_NAME = "LINES_CLEAR_NAME"
|
|
CRYPT_KEY = 987943759387540938469837689379857347598347598379584857934579343
|
|
|
|
|
|
class PieceContainer:
|
|
def __init__(self):
|
|
self.piece = None
|
|
|
|
|
|
class HoldQueue(PieceContainer):
|
|
pass
|
|
|
|
|
|
class Matrix(list, PieceContainer):
|
|
def __init__(self, lines, collumns):
|
|
list.__init__(self)
|
|
PieceContainer.__init__(self)
|
|
self.lines = lines
|
|
self.collumns = collumns
|
|
self.ghost = None
|
|
|
|
def reset(self):
|
|
self.clear()
|
|
for y in range(self.lines + 3):
|
|
self.append_new_line()
|
|
|
|
def append_new_line(self):
|
|
self.append([None for x in range(self.collumns)])
|
|
|
|
def cell_is_free(self, coord):
|
|
return (
|
|
0 <= coord.x < self.collumns and 0 <= coord.y and not self[coord.y][coord.x]
|
|
)
|
|
|
|
|
|
class NextQueue(PieceContainer):
|
|
def __init__(self, nb_pieces):
|
|
super().__init__()
|
|
self.nb_pieces = nb_pieces
|
|
self.pieces = []
|
|
|
|
|
|
class Stats:
|
|
|
|
SCORES = (
|
|
{LINES_CLEAR_NAME: "", T_Spin.NONE: 0, T_Spin.MINI: 1, T_Spin.T_SPIN: 4},
|
|
{LINES_CLEAR_NAME: "SINGLE", T_Spin.NONE: 1, T_Spin.MINI: 2, T_Spin.T_SPIN: 8},
|
|
{LINES_CLEAR_NAME: "DOUBLE", T_Spin.NONE: 3, T_Spin.T_SPIN: 12},
|
|
{LINES_CLEAR_NAME: "TRIPLE", T_Spin.NONE: 5, T_Spin.T_SPIN: 16},
|
|
{LINES_CLEAR_NAME: "TETRIS", T_Spin.NONE: 8},
|
|
)
|
|
|
|
def _get_score(self):
|
|
return self._score
|
|
|
|
def _set_score(self, new_score):
|
|
self._score = new_score
|
|
if self._score > self.high_score:
|
|
self.high_score = self._score
|
|
|
|
score = property(_get_score, _set_score)
|
|
|
|
def __init__(self):
|
|
self._score = 0
|
|
self.high_score = 0
|
|
self.time = 0
|
|
|
|
def new_game(self, level):
|
|
self.level = level - 1
|
|
self.score = 0
|
|
self.lines_cleared = 0
|
|
self.goal = 0
|
|
self.time = 0
|
|
self.combo = -1
|
|
|
|
self.lock_delay = LOCK_DELAY
|
|
self.fall_delay = FALL_DELAY
|
|
|
|
def new_level(self):
|
|
self.level += 1
|
|
self.goal += 5 * self.level
|
|
if self.level <= 20:
|
|
self.fall_delay = pow(0.8 - ((self.level - 1) * 0.007), self.level - 1)
|
|
if self.level > 15:
|
|
self.lock_delay = 0.5 * pow(0.9, self.level - 15)
|
|
|
|
def update_time(self):
|
|
self.time += 1
|
|
|
|
def locks_down(self, t_spin, lines_cleared):
|
|
pattern_name = []
|
|
pattern_score = 0
|
|
combo_score = 0
|
|
|
|
if t_spin:
|
|
pattern_name.append(t_spin)
|
|
if lines_cleared:
|
|
pattern_name.append(self.SCORES[lines_cleared][LINES_CLEAR_NAME])
|
|
self.combo += 1
|
|
else:
|
|
self.combo = -1
|
|
|
|
if lines_cleared or t_spin:
|
|
pattern_score = self.SCORES[lines_cleared][t_spin]
|
|
self.goal -= pattern_score
|
|
pattern_score *= 100 * self.level
|
|
pattern_name = "\n".join(pattern_name)
|
|
|
|
if self.combo >= 1:
|
|
combo_score = (20 if lines_cleared == 1 else 50) * self.combo * self.level
|
|
|
|
self.score += pattern_score + combo_score
|
|
|
|
return pattern_name, pattern_score, self.combo, combo_score
|
|
|
|
|
|
class TetrisLogic:
|
|
|
|
LINES = LINES
|
|
COLLUMNS = COLLUMNS
|
|
NEXT_PIECES = NEXT_PIECES
|
|
AUTOREPEAT_DELAY = AUTOREPEAT_DELAY
|
|
AUTOREPEAT_PERIOD = AUTOREPEAT_PERIOD
|
|
MATRIX_PIECE_COORD = MATRIX_PIECE_COORD
|
|
|
|
def __init__(self, lines=LINES, collumns=COLLUMNS, next_pieces=NEXT_PIECES):
|
|
self.stats = Stats()
|
|
self.load_high_score()
|
|
self.phase = Phase.STARTING
|
|
self.held = HoldQueue()
|
|
self.matrix = Matrix(lines, collumns)
|
|
self.next = NextQueue(next_pieces)
|
|
self.autorepeatable_actions = (self.move_left, self.move_right, self.soft_drop)
|
|
self.pressed_actions = []
|
|
|
|
def new_game(self, level=1):
|
|
self.stats.new_game(level)
|
|
|
|
self.pressed_actions = []
|
|
self.auto_repeat = False
|
|
|
|
self.matrix.reset()
|
|
self.next.pieces = [Tetromino() for n in range(self.next.nb_pieces)]
|
|
self.held.piece = None
|
|
self.start(self.stats.update_time, 1)
|
|
|
|
self.on_new_game(self.next.pieces)
|
|
self.new_level()
|
|
|
|
def on_new_game(self, next_pieces):
|
|
pass
|
|
|
|
def new_level(self):
|
|
self.stats.new_level()
|
|
self.on_new_level(self.stats.level)
|
|
self.generation_phase()
|
|
|
|
def on_new_level(self, level):
|
|
pass
|
|
|
|
def generation_phase(self):
|
|
self.phase = Phase.GENERATION
|
|
self.matrix.piece = self.next.pieces.pop(0)
|
|
self.next.pieces.append(Tetromino())
|
|
self.matrix.piece.coord = self.MATRIX_PIECE_COORD
|
|
self.matrix.ghost = self.matrix.piece.ghost()
|
|
self.refresh_ghost()
|
|
|
|
self.on_generation_phase(
|
|
self.matrix, self.matrix.piece, self.matrix.ghost, self.next.pieces
|
|
)
|
|
if self.move(Movement.DOWN):
|
|
self.falling_phase()
|
|
else:
|
|
self.game_over()
|
|
|
|
def refresh_ghost(self):
|
|
self.matrix.ghost.coord = self.matrix.piece.coord
|
|
for ghost_mino, current_mino in zip(self.matrix.ghost, self.matrix.piece):
|
|
ghost_mino.coord = current_mino.coord
|
|
while self.space_to_move(
|
|
self.matrix.ghost.coord + Movement.DOWN,
|
|
(mino.coord for mino in self.matrix.ghost),
|
|
):
|
|
self.matrix.ghost.coord += Movement.DOWN
|
|
|
|
def on_generation_phase(self, matrix, falling_piece, ghost_piece, next_pieces):
|
|
pass
|
|
|
|
def falling_phase(self):
|
|
self.phase = Phase.FALLING
|
|
self.stop(self.locks_down)
|
|
self.start(self.fall, self.stats.fall_delay)
|
|
self.on_falling_phase(self.matrix.piece, self.matrix.ghost)
|
|
if self.pressed_actions:
|
|
self.start(self.repeat_action, self.AUTOREPEAT_DELAY)
|
|
|
|
def on_falling_phase(self, falling_piece, ghost_piece):
|
|
pass
|
|
|
|
def fall(self):
|
|
self.move(Movement.DOWN)
|
|
|
|
def move(self, movement, rotated_coords=None, lock=True):
|
|
potential_coord = self.matrix.piece.coord + movement
|
|
portential_minoes_coords = rotated_coords or (mino.coord for mino in self.matrix.piece)
|
|
if self.space_to_move(potential_coord, portential_minoes_coords):
|
|
self.matrix.piece.coord = potential_coord
|
|
if rotated_coords:
|
|
for mino, coord in zip(self.matrix.piece, rotated_coords):
|
|
mino.coord = coord
|
|
self.refresh_ghost()
|
|
if movement != Movement.DOWN:
|
|
self.matrix.piece.last_rotation_point = None
|
|
if self.space_to_fall:
|
|
self.falling_phase()
|
|
else:
|
|
self.lock_phase()
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def space_to_fall(self):
|
|
return self.space_to_move(
|
|
self.matrix.piece.coord + Movement.DOWN,
|
|
(mino.coord for mino in self.matrix.piece),
|
|
)
|
|
|
|
def rotate(self, rotation):
|
|
rotated_coords = tuple(
|
|
Coord(rotation * mino.coord.y, -rotation * mino.coord.x)
|
|
for mino in self.matrix.piece
|
|
)
|
|
for rotation_point, liberty_degree in enumerate(
|
|
self.matrix.piece.SRS[rotation][self.matrix.piece.orientation], start=1
|
|
):
|
|
if self.move(liberty_degree, rotated_coords, lock=False):
|
|
self.matrix.piece.orientation = (
|
|
self.matrix.piece.orientation + rotation
|
|
) % 4
|
|
self.matrix.piece.last_rotation_point = rotation_point
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def lock_phase(self):
|
|
self.phase = Phase.LOCK
|
|
self.on_lock_phase(self.matrix.piece)
|
|
self.restart(self.locks_down, self.stats.lock_delay)
|
|
|
|
def on_lock_phase(self, locked_piece):
|
|
pass
|
|
|
|
def space_to_move(self, potential_coord, minoes_coord):
|
|
return all(
|
|
self.matrix.cell_is_free(potential_coord + mino_coord)
|
|
for mino_coord in minoes_coord
|
|
)
|
|
|
|
def locks_down(self):
|
|
self.stop(self.locks_down)
|
|
self.stop(self.fall)
|
|
|
|
# Game over
|
|
if all(
|
|
(mino.coord + self.matrix.piece.coord).y >= self.matrix.lines
|
|
for mino in self.matrix.piece
|
|
):
|
|
self.game_over()
|
|
return
|
|
|
|
if self.pressed_actions:
|
|
self.auto_repeat = False
|
|
self.stop(self.repeat_action)
|
|
|
|
for mino in self.matrix.piece:
|
|
coord = mino.coord + self.matrix.piece.coord
|
|
if coord.y <= self.matrix.lines + 3:
|
|
self.matrix[coord.y][coord.x] = mino
|
|
|
|
self.on_locks_down(self.matrix, self.matrix.piece)
|
|
|
|
self.phase = Phase.PATTERN
|
|
|
|
# T-Spin
|
|
if (
|
|
type(self.matrix.piece) == T_Tetrimino
|
|
and self.matrix.piece.last_rotation_point is not None
|
|
):
|
|
a = self.is_t_slot(0)
|
|
b = self.is_t_slot(1)
|
|
c = self.is_t_slot(3)
|
|
d = self.is_t_slot(2)
|
|
if self.matrix.piece.last_rotation_point == 5 or (a and b and (c or d)):
|
|
t_spin = T_Spin.T_SPIN
|
|
elif c and d and (a or b):
|
|
t_spin = T_Spin.MINI
|
|
else:
|
|
t_spin = T_Spin.NONE
|
|
else:
|
|
t_spin = T_Spin.NONE
|
|
|
|
# Clear complete lines
|
|
self.lines_to_remove = []
|
|
for y, line in reversed(list(enumerate(self.matrix))):
|
|
if all(mino for mino in line):
|
|
self.lines_to_remove.append(y)
|
|
lines_cleared = len(self.lines_to_remove)
|
|
if lines_cleared:
|
|
self.stats.lines_cleared += lines_cleared
|
|
|
|
self.phase = Phase.ANIMATE
|
|
self.on_animate_phase(self.matrix, self.lines_to_remove)
|
|
|
|
self.phase = Phase.ELIMINATE
|
|
self.on_eliminate_phase(self.matrix, self.lines_to_remove)
|
|
for y in self.lines_to_remove:
|
|
self.matrix.pop(y)
|
|
self.matrix.append_new_line()
|
|
|
|
self.phase = Phase.COMPLETION
|
|
pattern_name, pattern_score, nb_combo, combo_score = self.stats.locks_down(
|
|
t_spin, lines_cleared
|
|
)
|
|
self.on_completion_phase(pattern_name, pattern_score, nb_combo, combo_score)
|
|
|
|
if self.stats.goal <= 0:
|
|
self.new_level()
|
|
else:
|
|
self.generation_phase()
|
|
|
|
def on_locks_down(self, matrix, locked_piece):
|
|
pass
|
|
|
|
def on_animate_phase(self, matrix, lines_to_remove):
|
|
pass
|
|
|
|
def on_eliminate_phase(self, matrix, lines_to_remove):
|
|
pass
|
|
|
|
def on_completion_phase(self, pattern_name, pattern_score, nb_combo, combo_score):
|
|
pass
|
|
|
|
# Actions
|
|
|
|
def move_left(self):
|
|
self.move(Movement.LEFT)
|
|
|
|
def move_right(self):
|
|
self.move(Movement.RIGHT)
|
|
|
|
def rotate_clockwise(self):
|
|
self.rotate(Rotation.CLOCKWISE)
|
|
|
|
def rotate_counter(self):
|
|
self.rotate(Rotation.COUNTER)
|
|
|
|
def soft_drop(self):
|
|
moved = self.move(Movement.DOWN)
|
|
if moved:
|
|
self.stats.score += 1
|
|
return moved
|
|
|
|
def hard_drop(self):
|
|
self.stop(self.locks_down)
|
|
while self.move(Movement.DOWN, lock=False):
|
|
self.stats.score += 2
|
|
self.locks_down()
|
|
|
|
def hold(self):
|
|
if not self.matrix.piece.hold_enabled:
|
|
return
|
|
|
|
self.matrix.piece.hold_enabled = False
|
|
self.stop(self.locks_down)
|
|
self.stop(self.fall)
|
|
self.matrix.piece, self.held.piece = self.held.piece, self.matrix.piece
|
|
|
|
for mino, coord in zip(self.held.piece, self.held.piece.MINOES_COORDS):
|
|
mino.coord = coord
|
|
|
|
if self.matrix.piece:
|
|
self.matrix.piece.coord = self.MATRIX_PIECE_COORD
|
|
self.matrix.ghost = self.matrix.piece.ghost()
|
|
self.on_hold(self.held.piece, self.matrix.piece, self.matrix.ghost)
|
|
self.falling_phase()
|
|
else:
|
|
self.generation_phase()
|
|
self.on_hold(self.held.piece, self.matrix.piece, self.matrix.ghost)
|
|
|
|
def on_hold(self, held_piece, falling_piece, ghost_piece):
|
|
pass
|
|
|
|
T_SLOT_COORDS = (Coord(-1, 1), Coord(1, 1), Coord(-1, 1), Coord(-1, -1))
|
|
|
|
def is_t_slot(self, n):
|
|
t_slot_coord = (
|
|
self.matrix.piece.coord
|
|
+ self.T_SLOT_COORDS[(self.matrix.piece.orientation + n) % 4]
|
|
)
|
|
return not self.matrix.cell_is_free(t_slot_coord)
|
|
|
|
def pause(self):
|
|
self.phase = Phase.PAUSED
|
|
self.stop_all()
|
|
self.pressed_actions = []
|
|
self.auto_repeat = False
|
|
self.stop(self.repeat_action)
|
|
|
|
def resume(self):
|
|
self.phase = Phase.FALLING
|
|
self.start(self.fall, self.stats.fall_delay)
|
|
if self.phase == Phase.LOCK:
|
|
self.start(self.locks_down, self.stats.lock_delay)
|
|
self.start(self.stats.update_time, 1)
|
|
|
|
def game_over(self):
|
|
self.phase = Phase.OVER
|
|
self.stop_all()
|
|
self.save_high_score()
|
|
self.on_game_over()
|
|
|
|
def on_game_over(self):
|
|
pass
|
|
|
|
def stop_all(self):
|
|
self.stop(self.fall)
|
|
self.stop(self.locks_down)
|
|
self.stop(self.stats.update_time)
|
|
|
|
def do_action(self, action):
|
|
action()
|
|
if action in self.autorepeatable_actions:
|
|
self.auto_repeat = False
|
|
self.pressed_actions.append(action)
|
|
if action == self.soft_drop:
|
|
delay = self.stats.fall_delay / 20
|
|
else:
|
|
delay = self.AUTOREPEAT_DELAY
|
|
self.restart(self.repeat_action, delay)
|
|
|
|
def repeat_action(self):
|
|
if self.pressed_actions:
|
|
self.pressed_actions[-1]()
|
|
if not self.auto_repeat:
|
|
self.auto_repeat = True
|
|
self.restart(self.repeat_action, self.AUTOREPEAT_PERIOD)
|
|
else:
|
|
self.auto_repeat = False
|
|
self.stop(self.repeat_action)
|
|
|
|
def remove_action(self, action):
|
|
if action in self.autorepeatable_actions:
|
|
try:
|
|
self.pressed_actions.remove(action)
|
|
except ValueError:
|
|
pass
|
|
|
|
def show_text(self, text):
|
|
print(text)
|
|
raise Warning("TetrisLogic.show_text not implemented.")
|
|
|
|
def load_high_score(self, crypted_high_score=None):
|
|
if crypted_high_score:
|
|
crypted_high_score = int(pickle.loads(crypted_high_score))
|
|
self.stats.high_score = crypted_high_score ^ CRYPT_KEY
|
|
else:
|
|
raise Warning(
|
|
"""TetrisLogic.load_high_score not implemented.
|
|
High score is set to 0"""
|
|
)
|
|
self.stats.high_score = 0
|
|
|
|
def save_high_score(self):
|
|
crypted_high_score = self.stats.high_score ^ CRYPT_KEY
|
|
crypted_high_score = pickle.dumps(crypted_high_score)
|
|
return crypted_high_score
|
|
|
|
def start(task, period):
|
|
raise Warning("TetrisLogic.start is not implemented.")
|
|
|
|
def stop(self, task):
|
|
raise Warning("TetrisLogic.stop is not implemented.")
|
|
|
|
def restart(self, task, period):
|
|
self.stop(task)
|
|
self.start(task, period)
|