TetrArcade/tetrislogic.py
2019-09-28 16:02:52 +02:00

527 lines
17 KiB
Python

# -*- coding: utf-8 -*-
import random
# Matrix
NB_LINES = 20
NB_COLS = 10
NB_NEXT_PIECES = 5
# Delays (seconds)
LOCK_DELAY = 0.5
FALL_DELAY = 1
AUTOREPEAT_DELAY = 0.220 # Official : 0.300
AUTOREPEAT_PERIOD = 0.010 # Official : 0.010
class Coord:
def __init__(self, x, y):
self.x = x
self.y = y
def __add__(self, other):
return Coord(self.x+other.x, self.y+other.y)
# Piece init position
MATRIX_PIECE_INIT_POSITION = Coord(4, NB_LINES)
NEXT_PIECES_POSITIONS = [
Coord(NB_COLS+6, NB_LINES-4*n-3)
for n in range(NB_NEXT_PIECES)
]
HELD_PIECE_POSITION = Coord(-7, NB_LINES-3)
HELD_I_POSITION = Coord(-7, NB_LINES-3)
class State:
STARTING = "starting"
PLAYING = "playing"
PAUSED = "paused"
OVER = "over"
class Movement:
LEFT = Coord(-1, 0)
RIGHT = Coord( 1, 0)
DOWN = Coord( 0, -1)
class Rotation:
CLOCKWISE = -1
COUNTERCLOCKWISE = 1
class T_Spin:
NO_T_SPIN = ""
MINI_T_SPIN = "MINI T-SPIN"
T_SPIN = "T-SPIN"
class AbstractScheduler:
def start(task, period):
raise Warning("AbstractScheduler.start is not implemented.")
def stop(self, task):
raise Warning("AbstractScheduler.stop is not implemented.")
def restart(self, task, period):
self.stop(task)
self.start(task, period)
class Tetromino:
class AbstractTetromino:
# Super rotation system
SRS = {
Rotation.COUNTERCLOCKWISE: (
(Coord(0, 0), Coord(1, 0), Coord(1, 1), Coord(0, -2), Coord(1, -2)),
(Coord(0, 0), Coord(-1, 0), Coord(-1, -1), Coord(0, 2), Coord(-1, 2)),
(Coord(0, 0), Coord(-1, 0), Coord(-1, 1), Coord(0, -2), Coord(-1, -2)),
(Coord(0, 0), Coord(1, 0), Coord(1, -1), Coord(0, 2), Coord(1, 2))
),
Rotation.CLOCKWISE: (
(Coord(0, 0), Coord(-1, 0), Coord(-1, 1), Coord(0, -2), Coord(-1, -2)),
(Coord(0, 0), Coord(-1, 0), Coord(-1, -1), Coord(0, -2), Coord(-1, 2)),
(Coord(0, 0), Coord(1, 0), Coord(1, 1), Coord(0, -2), Coord(1, -2)),
(Coord(0, 0), Coord(1, 0), Coord(1, -1), Coord(0, 2), Coord(1, 2))
)
}
lock_delay = LOCK_DELAY
fall_delay = FALL_DELAY
def __init__(self):
self.position = NEXT_PIECES_POSITIONS[-1]
self.minoes_positions = self.MINOES_POSITIONS
self.orientation = 0
self.last_rotation_point_used = None
self.hold_enabled = True
self.prelocked = False
def ghost(self):
return self.__class__()
class O(AbstractTetromino):
SRS = {
Rotation.COUNTERCLOCKWISE: (tuple(), tuple(), tuple(), tuple()),
Rotation.CLOCKWISE: (tuple(), tuple(), tuple(), tuple())
}
MINOES_POSITIONS = (Coord(0, 0), Coord(1, 0), Coord(0, 1), Coord(1, 1))
MINOES_COLOR = "yellow"
def rotate(self, direction):
return False
class I(AbstractTetromino):
SRS = {
Rotation.COUNTERCLOCKWISE: (
(Coord(0, -1), Coord(-1, -1), Coord(2, -1), Coord(-1, 1), Coord(2, -2)),
(Coord(1, 0), Coord(-1, 0), Coord(2, 0), Coord(-1, -1), Coord(2, 2)),
(Coord(0, 1), Coord(1, 1), Coord(-2, 1), Coord(1, -1), Coord(-2, 2)),
(Coord(-1, 0), Coord(1, 0), Coord(-2, 0), Coord(1, 1), Coord(-2, -2))
),
Rotation.CLOCKWISE: (
(Coord(1, 0), Coord(-1, 0), Coord(2, 0), Coord(-1, -1), Coord(2, 2)),
(Coord(0, -1), Coord(1, 1), Coord(-2, 1), Coord(1, -1), Coord(-2, 2)),
(Coord(-1, 0), Coord(1, 0), Coord(-2, 0), Coord(1, 1), Coord(-2, -2)),
(Coord(0, -1), Coord(-1, -1), Coord(2, -1), Coord(-1, 1), Coord(2, -2))
)
}
MINOES_POSITIONS = (Coord(-1, 0), Coord(0, 0), Coord(1, 0), Coord(2, 0))
MINOES_COLOR = "cyan"
class T(AbstractTetromino):
MINOES_POSITIONS = (Coord(-1, 0), Coord(0, 0), Coord(0, 1), Coord(1, 0))
MINOES_COLOR = "magenta"
class L(AbstractTetromino):
MINOES_POSITIONS = (Coord(-1, 0), Coord(0, 0), Coord(1, 0), Coord(1, 1))
MINOES_COLOR = "orange"
class J(AbstractTetromino):
MINOES_POSITIONS = (Coord(-1, 1), Coord(-1, 0), Coord(0, 0), Coord(1, 0))
MINOES_COLOR = "blue"
class S(AbstractTetromino):
MINOES_POSITIONS = (Coord(-1, 0), Coord(0, 0), Coord(0, 1), Coord(1, 1))
MINOES_COLOR = "green"
class Z(AbstractTetromino):
MINOES_POSITIONS = (Coord(-1, 1), Coord(0, 1), Coord(0, 0), Coord(1, 0))
MINOES_COLOR = "red"
TETROMINOES = (O, I, T, L, J, S, Z)
random_bag = []
def __new__(cls):
if not cls.random_bag:
cls.random_bag = list(cls.TETROMINOES)
random.shuffle(cls.random_bag)
return cls.random_bag.pop()()
class TetrisLogic():
T_SLOT = (Coord(-1, 1), Coord(1, 1), Coord(1, -1), Coord(-1, -1))
SCORES = (
{"name": "", T_Spin.NO_T_SPIN: 0, T_Spin.MINI_T_SPIN: 1, T_Spin.T_SPIN: 4},
{"name": "SINGLE", T_Spin.NO_T_SPIN: 1, T_Spin.MINI_T_SPIN: 2, T_Spin.T_SPIN: 8},
{"name": "DOUBLE", T_Spin.NO_T_SPIN: 3, T_Spin.MINI_T_SPIN: 12},
{"name": "TRIPLE", T_Spin.NO_T_SPIN: 5, T_Spin.T_SPIN: 16},
{"name": "TETRIS", T_Spin.NO_T_SPIN: 8}
)
scheduler = AbstractScheduler()
def __init__(self):
self.load_high_score()
self.state = State.STARTING
self.matrix = []
self.next_pieces = []
self.current_piece = None
self.held_piece = None
self.time = 0
self.autorepeatable_actions = (self.move_left, self.move_right, self.soft_drop)
self.pressed_actions = []
def new_game(self):
self.level = 0
self.score = 0
self.nb_lines = 0
self.goal = 0
self.time = 0
self.pressed_actions = []
self.auto_repeat = False
self.lock_delay = LOCK_DELAY
self.fall_delay = FALL_DELAY
self.matrix = [
[None for x in range(NB_COLS)]
for y in range(NB_LINES+3)
]
self.next_pieces = [Tetromino() for i in range(NB_NEXT_PIECES)]
self.current_piece = None
self.held_piece = None
self.state = State.PLAYING
self.scheduler.start(self.update_time, 1)
self.new_level()
def new_level(self):
self.level += 1
self.goal += 5 * self.level
if self.level <= 20:
self.fall_delay = pow(0.8 - ((self.level-1)*0.007), self.level-1)
if self.level > 15:
self.lock_delay = 0.5 * pow(0.9, self.level-15)
self.show_text("LEVEL\n{:n}".format(self.level))
self.scheduler.start(self.fall, self.fall_delay)
self.new_current_piece()
def new_current_piece(self):
self.current_piece = self.next_pieces.pop(0)
self.current_piece.position = MATRIX_PIECE_INIT_POSITION
self.ghost_piece = self.current_piece.ghost()
self.move_ghost()
self.next_pieces.append(Tetromino())
for piece, position in zip (self.next_pieces, NEXT_PIECES_POSITIONS):
piece.position = position
if not self.can_move(
self.current_piece.position,
self.current_piece.minoes_positions
):
self.game_over()
def move_left(self):
self.move(Movement.LEFT)
def move_right(self):
self.move(Movement.RIGHT)
def rotate_counterclockwise(self):
self.rotate(Rotation.COUNTERCLOCKWISE)
def rotate_clockwise(self):
self.rotate(Rotation.CLOCKWISE)
def move_ghost(self):
self.ghost_piece.position = self.current_piece.position
self.ghost_piece.minoes_positions = self.current_piece.minoes_positions
while self.can_move(
self.ghost_piece.position + Movement.DOWN,
self.ghost_piece.minoes_positions
):
self.ghost_piece.position += Movement.DOWN
def soft_drop(self):
if self.move(Movement.DOWN):
self.add_to_score(1)
return True
else:
return False
def hard_drop(self):
while self.move(Movement.DOWN, prelock=False):
self.add_to_score(2)
self.lock()
def fall(self):
self.move(Movement.DOWN)
def move(self, movement, prelock=True):
potential_position = self.current_piece.position + movement
if self.can_move(potential_position, self.current_piece.minoes_positions):
if self.current_piece.prelocked:
self.scheduler.restart(self.lock, self.lock_delay)
self.current_piece.position = potential_position
self.current_piece.last_rotation_point_used = None
self.move_ghost()
return True
else:
if (
prelock and not self.current_piece.prelocked
and movement == Movement.DOWN
):
self.current_piece.prelocked = True
self.scheduler.start(self.lock, self.lock_delay)
return False
def rotate(self, direction):
rotated_minoes_positions = tuple(
Coord(-direction*mino_position.y, direction*mino_position.x)
for mino_position in self.current_piece.minoes_positions
)
for rotation_point, liberty_degree in enumerate(
self.current_piece.SRS[direction][self.current_piece.orientation],
start = 1
):
potential_position = self.current_piece.position + liberty_degree
if self.can_move(potential_position, rotated_minoes_positions):
if self.current_piece.prelocked:
self.scheduler.restart(self.lock, self.lock_delay)
self.current_piece.position = potential_position
self.current_piece.minoes_positions = rotated_minoes_positions
self.current_piece.orientation = (
(self.current_piece.orientation + direction) % 4
)
self.current_piece.last_rotation_point_used = rotation_point
self.move_ghost()
return True
else:
return False
def can_move(self, potential_position, minoes_positions):
return all(
self.cell_is_free(potential_position+mino_position)
for mino_position in minoes_positions
)
def cell_is_free(self, position):
return (
0 <= position.x < NB_COLS
and 0 <= position.y
and not self.matrix[position.y][position.x]
)
def add_to_score(self, ds):
self.score += ds
if self.score > self.high_score:
self.high_score = self.score
def lock(self):
if self.move(Movement.DOWN):
return
self.current_piece.prelocked = False
self.scheduler.stop(self.lock)
if self.pressed_actions:
self.stop_autorepeat()
self.scheduler.start(self.repeat_action, AUTOREPEAT_DELAY)
if all(
(mino_position + self.current_piece.position).y >= NB_LINES
for mino_position in self.current_piece.minoes_positions
):
self.game_over()
return
for mino_position in self.current_piece.minoes_positions:
position = mino_position + self.current_piece.position
if position.y <= NB_LINES+3:
self.matrix[position.y][position.x] = self.current_piece.MINOES_COLOR
nb_lines_cleared = 0
for y, line in reversed(list(enumerate(self.matrix))):
if all(mino for mino in line):
nb_lines_cleared += 1
self.matrix.pop(y)
self.matrix.append([None for x in range(NB_COLS)])
if nb_lines_cleared:
self.nb_lines += nb_lines_cleared
if (
self.current_piece.__class__ == Tetromino.T
and self.current_piece.last_rotation_point_used is not None
):
position = self.current_piece.position
orientation = self.current_piece.orientation
nb_orientations = len(self.current_piece.SRS[Rotation.CLOCKWISE])
a = not self.cell_is_free(position+self.T_SLOT[orientation])
b = not self.cell_is_free(position+self.T_SLOT[(orientation-1)%nb_orientations])
c = not self.cell_is_free(position+self.T_SLOT[(orientation-3)%nb_orientations])
d = not self.cell_is_free(position+self.T_SLOT[(orientation-2)%nb_orientations])
if self.current_piece.last_rotation_point_used == 5 or (a and b and (c or d)):
t_spin = T_Spin.T_SPIN
elif c and d and (a or b):
t_spin = T_Spin.MINI_T_SPIN
else:
t_spin = T_Spin.NO_T_SPIN
else:
t_spin = T_Spin.NO_T_SPIN
lock_strings = []
lock_score = 0
if t_spin:
lock_strings.append(t_spin)
if nb_lines_cleared:
lock_strings.append(self.SCORES[nb_lines_cleared]["name"])
self.combo += 1
else:
self.combo = -1
if nb_lines_cleared or t_spin:
ds = self.SCORES[nb_lines_cleared][t_spin]
self.goal -= ds
ds *= 100 * self.level
lock_score += ds
lock_strings.append(str(ds))
if self.combo >= 1:
lock_strings.append("COMBO x%d" % self.combo)
ds = (20 if nb_lines_cleared==1 else 50) * self.combo * self.level
lock_score += ds
lock_strings.append(str(ds))
if lock_strings:
self.show_text("\n".join(lock_strings))
self.add_to_score(lock_score)
if self.goal <= 0:
self.scheduler.stop(self.fall)
self.new_level()
else:
self.new_current_piece()
def swap(self):
if self.current_piece.hold_enabled:
self.current_piece.hold_enabled = False
self.current_piece.prelocked = False
self.scheduler.stop(self.lock)
self.current_piece, self.held_piece = self.held_piece, self.current_piece
if self.held_piece.__class__ == Tetromino.I:
self.held_piece.position = HELD_I_POSITION
else:
self.held_piece.position = HELD_PIECE_POSITION
self.held_piece.minoes_positions = self.held_piece.MINOES_POSITIONS
if self.current_piece:
self.current_piece.position = MATRIX_PIECE_INIT_POSITION
self.ghost_piece = self.current_piece.ghost()
self.move_ghost()
else:
self.new_current_piece()
def pause(self):
self.state = State.PAUSED
self.scheduler.stop(self.fall)
self.scheduler.stop(self.lock)
self.scheduler.stop(self.update_time)
self.pressed_actions = []
self.stop_autorepeat()
def resume(self):
self.state = State.PLAYING
self.scheduler.start(self.fall, self.fall_delay)
if self.current_piece.prelocked:
self.scheduler.start(self.lock, self.lock_delay)
self.scheduler.start(self.update_time, 1)
def game_over(self):
self.state = State.OVER
self.scheduler.stop(self.fall)
self.scheduler.stop(self.update_time)
self.scheduler.stop(self.repeat_action)
self.save_high_score()
def update_time(self, delta_time=1):
self.time += delta_time
def do_action(self, action):
action()
if action in self.autorepeatable_actions:
self.stop_autorepeat()
self.pressed_actions.append(action)
self.scheduler.start(self.repeat_action, AUTOREPEAT_DELAY)
def repeat_action(self):
if self.pressed_actions:
self.pressed_actions[-1]()
if not self.auto_repeat:
self.auto_repeat = True
self.scheduler.restart(self.repeat_action, AUTOREPEAT_PERIOD)
else:
self.stop_autorepeat()
def remove_action(self, action):
if action in self.autorepeatable_actions:
try:
self.pressed_actions.remove(action)
except ValueError:
pass
def stop_autorepeat(self):
self.auto_repeat = False
self.scheduler.stop(self.repeat_action)
def show_text(self, text):
print(text)
raise Warning("TetrisLogic.show_text not implemented.")
def load_high_score(self):
self.high_score = 0
raise Warning(
"""TetrisLogic.load_high_score not implemented.
High score is set to 0"""
)
def save_high_score(self):
raise Warning(
"""TetrisLogic.save_high_score not implemented.
High score is not saved"""
)