""" This example procedurally develops a random cave based on cellular automata. For more information, see: https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664 If Python and Arcade are installed, this example can be run from the command line with: python -m arcade.examples.procedural_caves_cellular """ import random import arcade import timeit import os # Sprite scaling. Make this larger, like 0.5 to zoom in and add # 'mystery' to what you can see. Make it smaller, like 0.1 to see # more of the map. SPRITE_SCALING = 0.125 SPRITE_SIZE = 128 * SPRITE_SCALING # How big the grid is GRID_WIDTH = 400 GRID_HEIGHT = 300 # Parameters for cellular automata CHANCE_TO_START_ALIVE = 0.4 DEATH_LIMIT = 3 BIRTH_LIMIT = 4 NUMBER_OF_STEPS = 4 # How fast the player moves MOVEMENT_SPEED = 5 # How close the player can get to the edge before we scroll. VIEWPORT_MARGIN = 300 # How big the window is WINDOW_WIDTH = 800 WINDOW_HEIGHT = 600 WINDOW_TITLE = "Procedural Caves Cellular Automata Example" # If true, rather than each block being a separate sprite, blocks on rows # will be merged into one sprite. MERGE_SPRITES = False def create_grid(width, height): """ Create a two-dimensional grid of specified size. """ return [[0 for x in range(width)] for y in range(height)] def initialize_grid(grid): """ Randomly set grid locations to on/off based on chance. """ height = len(grid) width = len(grid[0]) for row in range(height): for column in range(width): if random.random() <= CHANCE_TO_START_ALIVE: grid[row][column] = 1 def count_alive_neighbors(grid, x, y): """ Count neighbors that are alive. """ height = len(grid) width = len(grid[0]) alive_count = 0 for i in range(-1, 2): for j in range(-1, 2): neighbor_x = x + i neighbor_y = y + j if i == 0 and j == 0: continue elif neighbor_x < 0 or neighbor_y < 0 or neighbor_y >= height or neighbor_x >= width: # Edges are considered alive. Makes map more likely to appear naturally closed. alive_count += 1 elif grid[neighbor_y][neighbor_x] == 1: alive_count += 1 return alive_count def do_simulation_step(old_grid): """ Run a step of the cellular automaton. """ height = len(old_grid) width = len(old_grid[0]) new_grid = create_grid(width, height) for x in range(width): for y in range(height): alive_neighbors = count_alive_neighbors(old_grid, x, y) if old_grid[y][x] == 1: if alive_neighbors < DEATH_LIMIT: new_grid[y][x] = 0 else: new_grid[y][x] = 1 else: if alive_neighbors > BIRTH_LIMIT: new_grid[y][x] = 1 else: new_grid[y][x] = 0 return new_grid class MyGame(arcade.Window): """ Main application class. """ def __init__(self): super().__init__(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, resizable=True) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) self.grid = None self.wall_list = None self.player_list = None self.player_sprite = None self.view_bottom = 0 self.view_left = 0 self.draw_time = 0 self.physics_engine = None arcade.set_background_color(arcade.color.BLACK) def setup(self): self.wall_list = arcade.SpriteList(use_spatial_hash=True) self.player_list = arcade.SpriteList() # Create cave system using a 2D grid self.grid = create_grid(GRID_WIDTH, GRID_HEIGHT) initialize_grid(self.grid) for step in range(NUMBER_OF_STEPS): self.grid = do_simulation_step(self.grid) # Create sprites based on 2D grid if not MERGE_SPRITES: # This is the simple-to-understand method. Each grid location # is a sprite. for row in range(GRID_HEIGHT): for column in range(GRID_WIDTH): if self.grid[row][column] == 1: wall = arcade.Sprite("images/grassCenter.png", SPRITE_SCALING) wall.center_x = column * SPRITE_SIZE + SPRITE_SIZE / 2 wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2 self.wall_list.append(wall) else: # This uses new Arcade 1.3.1 features, that allow me to create a # larger sprite with a repeating texture. So if there are multiple # cells in a row with a wall, we merge them into one sprite, with a # repeating texture for each cell. This reduces our sprite count. for row in range(GRID_HEIGHT): column = 0 while column < GRID_WIDTH: while column < GRID_WIDTH and self.grid[row][column] == 0: column += 1 start_column = column while column < GRID_WIDTH and self.grid[row][column] == 1: column += 1 end_column = column - 1 column_count = end_column - start_column + 1 column_mid = (start_column + end_column) / 2 wall = arcade.Sprite("images/grassCenter.png", SPRITE_SCALING, repeat_count_x=column_count) wall.center_x = column_mid * SPRITE_SIZE + SPRITE_SIZE / 2 wall.center_y = row * SPRITE_SIZE + SPRITE_SIZE / 2 wall.width = SPRITE_SIZE * column_count self.wall_list.append(wall) # Set up the player self.player_sprite = arcade.Sprite("images/character.png", SPRITE_SCALING) self.player_list.append(self.player_sprite) # Randomly place the player. If we are in a wall, repeat until we aren't. placed = False while not placed: # Randomly position max_x = GRID_WIDTH * SPRITE_SIZE max_y = GRID_HEIGHT * SPRITE_SIZE self.player_sprite.center_x = random.randrange(max_x) self.player_sprite.center_y = random.randrange(max_y) # Are we in a wall? walls_hit = arcade.check_for_collision_with_list(self.player_sprite, self.wall_list) if len(walls_hit) == 0: # Not in a wall! Success! placed = True self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.wall_list) def on_draw(self): """ Render the screen. """ # Start timing how long this takes draw_start_time = timeit.default_timer() # This command should happen before we start drawing. It will clear # the screen to the background color, and erase what we drew last frame. arcade.start_render() # Draw the sprites self.wall_list.draw() self.player_list.draw() # Draw info on the screen sprite_count = len(self.wall_list) output = f"Sprite Count: {sprite_count}" arcade.draw_text(output, self.view_left + 20, self.height - 20 + self.view_bottom, arcade.color.WHITE, 16) output = f"Drawing time: {self.draw_time:.3f}" arcade.draw_text(output, self.view_left + 20, self.height - 40 + self.view_bottom, arcade.color.WHITE, 16) output = f"Processing time: {self.processing_time:.3f}" arcade.draw_text(output, self.view_left + 20, self.height - 60 + self.view_bottom, arcade.color.WHITE, 16) self.draw_time = timeit.default_timer() - draw_start_time def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.UP: self.player_sprite.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player_sprite.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player_sprite.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player_sprite.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player_sprite.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player_sprite.change_x = 0 def on_resize(self, width, height): arcade.set_viewport(self.view_left, self.width + self.view_left, self.view_bottom, self.height + self.view_bottom) def update(self, delta_time): """ Movement and game logic """ start_time = timeit.default_timer() # Call update on all sprites (The sprites don't do much in this # example though.) self.physics_engine.update() # --- Manage Scrolling --- # Track if we need to change the viewport changed = False # Scroll left left_bndry = self.view_left + VIEWPORT_MARGIN if self.player_sprite.left < left_bndry: self.view_left -= left_bndry - self.player_sprite.left changed = True # Scroll right right_bndry = self.view_left + WINDOW_WIDTH - VIEWPORT_MARGIN if self.player_sprite.right > right_bndry: self.view_left += self.player_sprite.right - right_bndry changed = True # Scroll up top_bndry = self.view_bottom + WINDOW_HEIGHT - VIEWPORT_MARGIN if self.player_sprite.top > top_bndry: self.view_bottom += self.player_sprite.top - top_bndry changed = True # Scroll down bottom_bndry = self.view_bottom + VIEWPORT_MARGIN if self.player_sprite.bottom < bottom_bndry: self.view_bottom -= bottom_bndry - self.player_sprite.bottom changed = True if changed: arcade.set_viewport(self.view_left, self.width + self.view_left, self.view_bottom, self.height + self.view_bottom) # Save the time it took to do this. self.processing_time = timeit.default_timer() - start_time def main(): game = MyGame() game.setup() arcade.run() if __name__ == "__main__": main()