Update core.py

This commit is contained in:
adrienmalin 2019-02-22 15:39:06 +01:00
parent 31690ce04f
commit 3cb7a4feb6

View File

@ -1,6 +1,7 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import random import random
import time
class Rotation: class Rotation:
@ -36,6 +37,7 @@ class Mino:
class Tetromino: class Tetromino:
INIT_POSITION = Point(4, 0)
SUPER_ROTATION_SYSTEM = ( SUPER_ROTATION_SYSTEM = (
{ {
Rotation.COUNTERCLOCKWISE: (Point(0, 0), Point(1, 0), Point(1, -1), Point(0, 2), Point(1, 2)), Rotation.COUNTERCLOCKWISE: (Point(0, 0), Point(1, 0), Point(1, -1), Point(0, 2), Point(1, 2)),
@ -56,72 +58,14 @@ class Tetromino:
) )
lock_delay = 0.5 lock_delay = 0.5
def __init__(self, matrix, position): def __init__(self, position):
self.position = position self.position = self.INIT_POSITION
self.minoes_position = self.MINOES_POSITIONS self.minoes_position = self.MINOES_POSITIONS
self.orientation = 0 self.orientation = 0
self.rotation_point_5_used = False self.rotation_point_5_used = False
self.rotated_last = False self.rotated_last = False
self.hold_enabled = True self.hold_enabled = True
def _possible_position(self, minoes_position, movement):
potential_position = self.position + movement
if all(
self.matrix.is_free_cell(mino_position+potential_position)
for mino_position in minoes_position
):
return potential_position
def _move(self, movement):
possible_position = self._possible_position(self.minoes_position, movement)
if possible_position:
self.position = possible_position
self.rotated_last = False
return True
else:
return False
def move_left(self):
return self._move(Movement.LEFT)
def move_right(self):
return self._move(Movement.RIGHT)
def soft_drop(self):
if self._move(Movement.DOWN):
return 1
def fall(self):
return self._move(Movement.DOWN)
def hard_drop(self):
lines = 0
while self._move(Movement.DOWN, lock=False):
lines += 2
return lines
def _rotate(self, direction):
potential_minoes_positions = tuple(
Point(-direction*mino_position.y, direction*mino_position.x)
for mino_position in self.minoes_position
)
for rotation_point, liberty_degree in enumerate(self.SUPER_ROTATION_SYSTEM[self.orientation][direction], start=1):
possible_position = self._possible_position(potential_minoes_positions, liberty_degree)
if possible_position:
self.orientation = (self.orientation+direction) % 4
self.position = possible_position
self.minoes_position = potential_minoes_positions
self.rotated_last = True
if rotation_point == 5:
self.rotation_point_5_used = True
return True
def rotate_clockwise(self):
return self._rotate(Rotation.CLOCKWISE)
def rotate_counterclockwise(self):
return self._rotate(Rotation.COUNTERCLOCKWISE)
def t_spin(self): def t_spin(self):
return "" return ""
@ -208,32 +152,21 @@ class Matrix:
and not (position.y >= 0 and self.cells[position.y][position.x] != Mino.NO_MINO) and not (position.y >= 0 and self.cells[position.y][position.x] != Mino.NO_MINO)
) )
def lock(self): def lock(self, piece):
t_spin = self.piece.t_spin() for mino_position in piece.minoes_position:
for mino_position in self.piece.minoes_position: position = mino_position + piece.position
position = mino_position + self.piece.position
if position.y >= 0: if position.y >= 0:
self.cells[position.y][position.x] = self.piece.color_pair self.cells[position.y][position.x] = piece.MINOES_TYPE
else:
return None
else: else:
self.game.over()
return
nb_lines_cleared = 0 nb_lines_cleared = 0
for y, line in enumerate(self.cells): for y, line in enumerate(self.cells):
if all(mino for mino in line): if all(mino for mino in line):
self.cells.pop(y) self.cells.pop(y)
self.cells.insert(0, [Mino.NO_MINO for x in range(self.NB_COLS)]) self.cells.insert(0, [Mino.NO_MINO for x in range(self.NB_COLS)])
nb_lines_cleared += 1 nb_lines_cleared += 1
return nb_lines_cleared
return nb_lines_cleared, t_spin
class Hold:
pass
class Next:
pass
class Stats(Window): class Stats(Window):
@ -305,43 +238,146 @@ class Stats(Window):
self.window.addstr(y, x, string) self.window.addstr(y, x, string)
self.window.refresh() self.window.refresh()
def clock(self):
self.clock_timer = scheduler.enter(1, 3, self.clock, tuple())
self.refresh()
def new_level(self): class Game:
AUTOREPEAT_DELAY = 0.02
LOCK_DELAY = 0.5
FALL_DELAY = 1
TETROMINOES = (O, I, T, L, J, S, Z)
SCORES = (
{"name": "", "": 0, "MINI T-SPIN": 1, "T-SPIN": 4},
{"name": "SINGLE", "": 1, "MINI T-SPIN": 2, "T-SPIN": 8},
{"name": "DOUBLE", "": 3, "T-SPIN": 12},
{"name": "TRIPLE", "": 5, "T-SPIN": 16},
{"name": "TETRIS", "": 8}
)
def __init__(self, level=1):
self.matrix = Matrix()
self.paused = False
self.start_next_piece()
self.score = 0
self.level = level - 1
self.random_bag = []
self.next_piece = self.random_piece()
self.held_piece = None
self.time = time.time()
self.playing = True
self.next_level()
self.new_piece()
def random_piece(self):
if not self.random_bag:
self.random_bag = list(self.TETROMINOES)
random.shuffle(self.random_bag)
return self.random_bag.pop()()
def next_level(self):
self.level += 1 self.level += 1
if self.level <= 20: if self.level <= 20:
Tetromino.fall_delay = pow(0.8 - ((self.level-1)*0.007), self.level-1) self.fall_delay = pow(0.8 - ((self.level-1)*0.007), self.level-1)
if self.level > 15: if self.level > 15:
Tetromino.lock_delay = 0.5 * pow(0.9, self.level-15) self.lock_delay = 0.5 * pow(0.9, self.level-15)
self.goal += 5 * self.level self.goal += 5 * self.level
self.refresh()
def piece_dropped(self, lines): def new_piece(self):
self.score += lines self.current_piece, self.next_piece = self.next_piece, self.random_piece()
if self.score > self.high_score: self.start_piece()
self.high_score = self.score
self.refresh()
def piece_locked(self, nb_lines, t_spin): def hold_piece(self):
self.strings = [] if self.current_piece.hold_enabled:
self.current_piece, self.hold_piece = self.held_piece, self.current_piece
self.held_piece.minoes_position = self.held_piece.MINOES_POSITIONS
self.held_piece.hold_enabled = False
if self.matrix.piece:
self.start_piece()
else:
self.new_piece()
def start_piece(self):
self.current_piece.position = self.current_piece.INIT_POSITION
if not
self.over()
def _possible_position(self, minoes_position, movement):
potential_position = self.position + movement
if all(
self.matrix.is_free_cell(mino_position+potential_position)
for mino_position in minoes_position
):
return potential_position
def piece_blocked(self):
return not self.current_piece._possible_position(self.current_piece.minoes_position, Movement.STILL)
def move(self, movement):
possible_position = self._possible_position(self.minoes_position, movement)
if possible_position:
self.position = possible_position
self.rotated_last = False
return True
else:
return False
def rotate(self, direction):
potential_minoes_positions = tuple(
Point(-direction*mino_position.y, direction*mino_position.x)
for mino_position in self.minoes_position
)
for rotation_point, liberty_degree in enumerate(self.SUPER_ROTATION_SYSTEM[self.orientation][direction], start=1):
possible_position = self._possible_position(potential_minoes_positions, liberty_degree)
if possible_position:
self.orientation = (self.orientation+direction) % 4
self.position = possible_position
self.minoes_position = potential_minoes_positions
self.rotated_last = True
if rotation_point == 5:
self.rotation_point_5_used = True
return True
def move_left(self):
self.current_piece.move(Movement.LEFT)
def move_right(self):
self.current_piece.move(Movement.RIGHT)
def soft_drop(self):
if self.current_piece.move(Movement.DOWN):
self.score += 1
def fall(self):
self.current_piece.move(Movement.DOWN)
def hard_drop(self):
while self.current_piece.move(Movement.DOWN):
self.score += 2
self.lock_piece()
def rotate_clockwise(self):
return self.current_piece.rotate(Rotation.CLOCKWISE)
def rotate_counterclockwise(self):
return self.current_piece.rotate(Rotation.COUNTERCLOCKWISE)
def lock_piece(self):
t_spin = self.current_piece.t_spin()
nb_lines = self.matrix.lock(self.current_piece)
if nb_lines is None:
self.over()
return
if t_spin:
self.strings.append(t_spin)
if nb_lines: if nb_lines:
self.strings.append(self.LINES_CLEARED_NAMES[nb_lines])
self.combo += 1 self.combo += 1
else: else:
self.combo = -1 self.combo = -1
if nb_lines or t_spin: if nb_lines or t_spin:
self.lines_cleared += nb_lines
ds = self.SCORES[nb_lines][t_spin] ds = self.SCORES[nb_lines][t_spin]
self.goal -= ds self.goal -= ds
ds *= 100 * self.level ds *= 100 * self.level
self.score += ds self.score += ds
self.strings.append(str(ds))
if self.combo >= 1: if self.combo >= 1:
self.strings.append("COMBO x%d" % self.combo) self.strings.append("COMBO x%d" % self.combo)
@ -349,186 +385,16 @@ class Stats(Window):
self.score += ds self.score += ds
self.strings.append(str(ds)) self.strings.append(str(ds))
if nb_lines == 4 or (nb_lines and t_spin):
curses.beep()
if self.score > self.high_score:
self.high_score = self.score
if self.goal <= 0: if self.goal <= 0:
self.new_level() self.new_level()
else:
self.refresh()
def save(self):
if not os.path.exists(self.DIR_PATH):
os.makedirs(self.DIR_PATH)
try:
with open(self.FILE_PATH, mode='w') as f:
f.write(str(self.high_score))
except Exception as e:
print("High score could not be saved:")
print(e)
class Game:
WIDTH = 80
HEIGHT = Matrix.HEIGHT
AUTOREPEAT_DELAY = 0.02
TETROMINOES = (O, I, T, L, J, S, Z)
def __init__(self, scr):
if curses.has_colors():
curses.start_color()
if curses.can_change_color():
curses.init_color(curses.COLOR_YELLOW, 1000, 500, 0)
for tetromino_class in self.TETROMINOES:
curses.init_pair(tetromino_class.COLOR, tetromino_class.COLOR, curses.COLOR_WHITE)
if tetromino_class.COLOR == curses.COLOR_ORANGE:
tetromino_class.color_pair = curses.color_pair(curses.COLOR_YELLOW)
else:
tetromino_class.color_pair = curses.color_pair(tetromino_class.COLOR)|curses.A_BOLD
try:
curses.curs_set(0)
except curses.error:
pass
scr.timeout(0)
scr.getch()
self.scr = scr
left_x = (curses.COLS-self.WIDTH) // 2
top_y = (curses.LINES-self.HEIGHT) // 2
side_width = (self.WIDTH - Matrix.WIDTH) // 2 - 1
side_height = self.HEIGHT - Hold.HEIGHT
right_x = left_x + Matrix.WIDTH + side_width + 2
bottom_y = top_y + Hold.HEIGHT
self.matrix = Matrix(self, left_x, top_y)
self.hold = Hold(side_width, left_x, top_y)
self.next = Next(side_width, right_x, top_y)
self.stats = Stats(self, side_width, side_height, left_x, bottom_y)
self.controls = ControlsWindow(side_width, side_height, right_x, bottom_y)
self.actions = {
self.controls["QUIT"]: self.quit,
self.controls["PAUSE"]: self.pause,
self.controls["HOLD"]: self.swap,
self.controls["MOVE LEFT"]: lambda: self.matrix.piece.move(Movement.LEFT),
self.controls["MOVE RIGHT"]: lambda: self.matrix.piece.move(Movement.RIGHT),
self.controls["SOFT DROP"]: lambda: self.matrix.piece.soft_drop(),
self.controls["ROTATE COUNTER"]: lambda: self.matrix.piece.rotate(Rotation.COUNTERCLOCKWISE),
self.controls["ROTATE CLOCKWISE"]: lambda: self.matrix.piece.rotate(Rotation.CLOCKWISE),
self.controls["HARD DROP"]: lambda: self.matrix.piece.hard_drop()
}
self.playing = True
self.paused = False
self.stats.time = time.time()
self.stats.clock_timer = scheduler.enter(1, 3, self.stats.clock, tuple())
self.random_bag = []
self.next.piece = self.random_piece()
self.start_next_piece()
self.input_timer = scheduler.enter(self.AUTOREPEAT_DELAY, 2, self.process_input, tuple())
try:
scheduler.run()
except KeyboardInterrupt:
self.quit()
def random_piece(self):
if not self.random_bag:
self.random_bag = list(self.TETROMINOES)
random.shuffle(self.random_bag)
return self.random_bag.pop()(self.matrix, Next.PIECE_POSITION)
def start_next_piece(self):
self.matrix.piece = self.next.piece
self.next.piece = self.random_piece()
self.next.refresh()
self.start_piece()
def start_piece(self):
self.matrix.piece.position = Matrix.PIECE_POSITION
if self.matrix.piece.possible_position(self.matrix.piece.minoes_position, Movement.STILL):
self.matrix.piece.fall_timer = scheduler.enter(Tetromino.fall_delay, 2, self.matrix.piece.fall, tuple())
self.matrix.refresh()
else:
self.over()
def process_input(self):
self.input_timer = scheduler.enter(self.AUTOREPEAT_DELAY, 2, self.process_input, tuple())
try:
action = self.actions[self.scr.getkey()]
except (curses.error, KeyError):
pass
else:
action()
def pause(self): def pause(self):
self.stats.time = time.time() - self.stats.time self.time = time.time() - self.time
self.paused = True self.paused = True
self.hold.refresh(paused=True)
self.matrix.refresh(paused=True)
self.next.refresh(paused=True)
self.scr.timeout(-1)
while True: def resume(self):
key = self.scr.getkey() self.time = time.time() - self.time
if key == self.controls["QUIT"]: self.paused = False
self.quit()
break
elif key == self.controls["PAUSE"]:
self.scr.timeout(0)
self.hold.refresh()
self.matrix.refresh()
self.next.refresh()
self.stats.time = time.time() - self.stats.time
break
def swap(self):
if self.matrix.piece.hold_enabled:
if self.matrix.piece.fall_timer:
self.matrix.piece.fall_timer = scheduler.cancel(self.matrix.piece.fall_timer)
if self.matrix.piece.lock_timer:
self.matrix.piece.lock_timer = scheduler.cancel(self.matrix.piece.lock_timer)
self.matrix.piece, self.hold.piece = self.hold.piece, self.matrix.piece
self.hold.piece.position = self.hold.PIECE_POSITION
self.hold.piece.minoes_position = self.hold.piece.MINOES_POSITIONS
self.hold.piece.hold_enabled = False
self.hold.refresh()
if self.matrix.piece:
self.start_piece()
else:
self.start_next_piece()
def over(self): def over(self):
self.matrix.refresh()
if curses.has_colors():
for tetromino_class in self.TETROMINOES:
curses.init_pair(tetromino_class.COLOR, tetromino_class.COLOR, curses.COLOR_BLACK)
for y, word in enumerate((("GA", "ME") ,("OV", "ER")), start=Matrix.NB_LINES//2):
for x, syllable in enumerate(word, start=Matrix.NB_COLS//2-1):
color = self.matrix.cells[y][x]
if color is None:
color = curses.COLOR_BLACK
else:
color |= curses.A_REVERSE
self.matrix.window.addstr(y, x*2+1, syllable, color)
self.matrix.window.refresh()
curses.beep()
self.scr.timeout(-1)
while self.scr.getkey() != self.controls["QUIT"]:
pass
self.quit()
def quit(self):
self.playing = False self.playing = False
if self.matrix.piece.fall_timer:
self.matrix.piece.fall_timer = scheduler.cancel(self.matrix.piece.fall_timer)
if self.matrix.piece.lock_timer:
self.matrix.piece.lock_timer = scheduler.cancel(self.matrix.piece.lock_timer)
if self.stats.clock_timer:
self.stats.clock_timer = scheduler.cancel(self.stats.clock_timer)
if self.input_timer:
self.input_timer = scheduler.cancel(self.input_timer)
self.stats.save()